Parasites are ubiquitous in natural systems and ecosystem-level effects should be proportional to the amount of biomass or energy flow altered by the parasites. Here we quantified the extent to which a manipulative parasite altered the flow of energy through a forest-stream ecosystem. In a Japanese headwater stream, camel crickets and grasshoppers (Orthoptera) were 20 times more likely to enter a stream if infected by a nematomorph parasite (Gordionus spp.), corroborating evidence that nematomorphs manipulate their hosts to seek water where the parasites emerge as free-living adults. Endangered Japanese trout (Salvelinus leucomaenis japonicus) readily ate these infected orthopterans, which due to their abundance, accounted for 60% of the annual energy intake of the trout population. Trout grew fastest in the fall, when nematomorphs were driving energy-rich orthopterans into the stream. When infected orthopterans were available, trout did not eat benthic invertebrates in proportion to their abundance, leading to the potential for cascading, indirect effects through the forest-stream ecosystem. These results provide the first quantitative evidence that a manipulative parasite can dramatically alter the flow of energy through and across ecosystems.
Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread.
The white-spotted charr (Salvelinus leucomaenis) is a coldwater-adapted fish distributed in far-eastern Asia. To assess phylogeographic patterns of this species over most of its range in the Japanese archipelago and Sakhalin Island, Russia, we examined nucleotide sequences of the mitochondrial DNA (mtDNA) cytochrome b region (557 bp) in 141 individuals from 50 populations. A total of 33 (5.5%) nucleotide positions were polymorphic and defined 29 haplotypes. Phylogenetic analysis assigned the observed haplotypes to four main clades, which were characterized by the idiosyncrasies and discontinuity of geographic distributions. The nested clade analyses revealed that the geographical distribution patterns of some haplotypes and clades were explained by historical event such as past fragmentation. Although substantial genetic differentiation was found among the four main clades, their geographic distributions overlapped extensively in several regions. Since white-spotted charr can potentially use both freshwater and marine environments, coexistence among different lineages can be attributed to secondary contact through range expansion by migratory individuals during multiple glacial periods after interglacial isolation. Finally, our data demonstrate that the current subspecies designation does not reflect the phylogeography of this species based on mtDNA analysis. Hierarchical analysis (AMOVA) also showed that genetic variation was far more pronounced within subspecies than among subspecies (i.e., among discrete regions). These results suggest that each population, rather than each subspecies, must be treated as an evolutionarily significant unit.
Divergent natural selection is thought to play a vital role in speciation, but clear, measurable examples from nature are still few. Among the many possible sources of divergent natural selection, predation pressure may be important because predators are ubiquitous in food webs. Here, we show evidence for divergent natural selection in a Lake Tanganyika cichlid, Telmatochromis temporalis, which uses burrows under stones or empty snail shells as shelters. This species contains normal and dwarf morphs at several localities. The normal morph inhabits rocky shorelines, whereas the dwarf morph invariably inhabits shell beds, where empty snail shells densely cover the lake bottom. Genetic evidence suggested that the dwarf morph evolved independently from the normal morph at two areas, and morphological analysis and evaluation of habitat structure revealed that the body sizes of morphs closely matched the available shelter sizes in their habitats. These findings suggest that the two morphs repeatedly evolved through divergent natural selection associated with the strategy for sheltering from predators.
BackgroundThe construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL) analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD) sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae) for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons) and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon.ResultsWe constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD). Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish.ConclusionsThe dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.