We study properties of Fisher distribution (von Mises-Fisher distribution, matrix Langevin distribution) on the rotation group SO(3). In particular we apply the holonomic gradient descent, introduced by Nakayama et al. (2011), and a method of series expansion for evaluating the normalizing constant of the distribution and for computing the maximum likelihood estimate. The rotation group can be identified with the Stiefel manifold of two orthonormal vectors. Therefore from the viewpoint of statistical modeling, it is of interest to compare Fisher distributions on these manifolds. We illustrate the difference with an example of near-earth objects data.
We evaluate the intersection numbers of loaded cycles associated with an n-fold Selberg-type integral. We proceed inductively using high-dimensional local systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.