In recent years, some methods of sentiment analysis have been developed for the health domain; however, the diabetes domain has not been explored yet. In addition, there is a lack of approaches that analyze the positive or negative orientation of each aspect contained in a document (a review, a piece of news, and a tweet, among others). Based on this understanding, we propose an aspect-level sentiment analysis method based on ontologies in the diabetes domain. The sentiment of the aspects is calculated by considering the words around the aspect which are obtained through N-gram methods (N-gram after, N-gram before, and N-gram around). To evaluate the effectiveness of our method, we obtained a corpus from Twitter, which has been manually labelled at aspect level as positive, negative, or neutral. The experimental results show that the best result was obtained through the N-gram around method with a precision of 81.93%, a recall of 81.13%, and an F-measure of 81.24%.
In the agricultural context, there is a great diversity of insects and diseases that affect crops. Moreover, the amount of data available on data sources such as the Web regarding these topics increase every day. This fact can represent a problem when farmers want to make decisions based on this large and dynamic amount of information. This work presents AgriEnt, a knowledge-based Web platform focused on supporting farmers in the decision-making process concerning crop insect pest diagnosis and management. AgriEnt relies on a layered functional architecture comprising four layers: the data layer, the semantic layer, the web services layer, and the presentation layer. This platform takes advantage of ontologies to formally and explicitly describe agricultural entomology experts’ knowledge and to perform insect pest diagnosis. Finally, to validate the AgriEnt platform, we describe a case study on diagnosing the insect pest affecting a crop. The results show that AgriEnt, through the use of the ontology, has proven to produce similar answers as the professional advice given by the entomology experts involved in the evaluation process. Therefore, this platform can guide farmers to make better decisions concerning crop insect pest diagnosis and management.
There are several cities and countries whose population depends on agriculture. Crops demand close monitoring regarding diseases because these ones can affect significantly both production and post-harvest life. The identification of disease symptoms plays a crucial role in the successful cultivation of crops. The diagnosis of diseases is a challenging task since many symptoms should be considered, which makes a proper diagnosis becomes a knowledge handling problem. This paper specifies an ontology-based decision support system that promotes the knowledge of experts for the plant disease diagnosis to farmers. This system takes advantage of ontologies in two ways, to exploit the knowledge contained in the ontology for decision support purposes, in this case, the diagnosis of diseases, and to provide a standard vocabulary for integrating phytopathology data sources. The system was evaluated for the diagnosis of diseases presented in short-cycle and perennial crops achieving promising results based on the F-measure metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.