The electrodeposition of most of technologically important metals has been shown to be possible from a wide range of room temperature molten salts, more commonly known today as 'ionic liquids'. These liquids are currently under intense scrutiny for a wide variety of applications some of which have already been commercialized. Despite the fact that electrodeposition was the first application studied in these liquids no metal deposition processes have as yet been developed to an industrial scale. This review addresses the practical and theoretical aspects that need to be considered when choosing ionic liquids for metal deposition. It details the current understanding of the physical and chemical properties of these interesting fluids and highlights the areas that need to be considered to develop practical electroplating systems. The effect of composition and temperature on viscosity and conductivity are discussed together with the fundamental approaches required to synthesise new liquids.
The solubility of 17 commonly available metal oxides in the elemental mass series Ti through Zn have been determined in three ionic liquids based on choline chloride. The hydrogen bond donors used were urea, malonic acid, and ethylene glycol. The results obtained are compared with aqueous solutions of HCl and NaCl. Some correlation is observed between the solubility in the deep eutectic solvents and that in aqueous solutions but some significant exceptions offer an opportunity for novel solvato-metallurgical processes.
Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.