Objective. To identify interleukin-17 (IL-17Conclusion. This study is the first to define the frequency and characteristics of "Th17" cells in JIA. We suggest that these highly proinflammatory cells contribute to joint pathology, as indicated by relationships with clinical phenotypes, and that the balance between IL-17؉
Objective. To devise and test a system with which to evaluate abnormalities on muscle biopsy samples obtained from children diagnosed with juvenile dermatomyositis (DM). Methods. We established an International Consensus Group on Juvenile DM Biopsy and carried out 2 phases of consensus process and scoring workshops. Biopsy sections (n ؍ 33) were stained by standard methods. The scoring tool was based on 4 domains of change: inflammatory, vascular, muscle fiber, and connective tissue. Using a Latin square design, biopsy samples were scored by 11 experts for items in each domain, and for a global abnormality measure using a 10-cm visual analog score (VAS 0 -10). The tool's reliability was assessed using an intraclass correlation coefficient (ICC) and scorer agreement (␣) by determining variation in scorers' ratings. Results. There was good agreement in many items of the tool, and several items refined between the meetings improved in reliability and/or agreement. The inflammatory and muscle fiber domains had the highest reliability and agreement. The overall VAS score for abnormality had high agreement and reliability, reaching an ICC of 0.863 at the second consensus meeting. Conclusion. We propose a provisional scoring system to measure abnormalities on muscle biopsy samples obtained from children with juvenile DM. This system needs to be validated, and then could be used in prospective studies to test which features of muscle pathology are prognostic of disease course or outcome. We suggest that the process we used could be a template for developing similar systems in other forms of myositis.
SummaryCytomegalovirus (CMV) infections post-haematopoietic stem cell transplantation (HSCT) can be effectively controlled through the adoptive transfer of donor-derived CMV-specific T cells (CMV-T). Current strategies involve a second leukapheresis collection from the original donor to manufacture CMV-T, which is often not possible in the unrelated donor setting. To overcome these limitations we have investigated the use of a small aliquot of the original granulocyte-colony stimulating factor (G-CSF) mobilized HSCT graft to manufacture CMV-T. We explored the T cell response to CMVpp65 peptide stimulation in G-CSF mobilized peripheral blood mononuclear cells (PBMC) and subsequently examined isolation of CMV-T based on the activation markers CD154 and CD25. CD25 + enriched CMV-T from G-CSF mobilized PBMC contained a higher proportion of FoxP3 expression than non-mobilized PBMC and showed superior suppression of T cell proliferation. Expanded CMV-T enriched through CD154 were CD4+ and CD8 + , demonstrated a high specificity for CMV, secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. These data provide the first known evidence that CMV-T can be effectively manufactured from G-CSF mobilized PBMC and that they share the same characteristics as CMV-T isolated in an identical manner from conventional non-mobilized PBMC. This provides a novel strategy for adoptive immunotherapy that abrogates the need for successive donation.
This study focuses upon three chemokines, namely CCL5, CXCL10 and CCL3, which are potential novel therapeutic targets in arthritis. The aim of the study was to analyse the expression and production of these three chemokines within the joints of children with juvenile idiopathic arthritis (JIA) of the oligoarticular and polyarticular subtypes. All three of these chemokines are highly expressed at the level of mRNA, with the most significant increase in mRNA levels being demonstrated for CCL5 when compared with matched peripheral blood samples and controls. We show that high levels of all three chemokines are present in synovial fluid of children with JIA. We investigate the major source of CCL5 from inflammatory synovial cells, which we show to be CD8+ T cells. This CD8+ synovial T cell population has an unexpected phenotype that has not been described previously, being CCR7-yet predominantly CD28+ and CD45RA-. These cells contain high levels of stored intracellular CCL5, and rapid release of CCL5 takes place on T cell stimulation, without requiring new protein synthesis. In addition, we demonstrate that CCL5 is present in synovial biopsies from these patients, in particular on the endothelium of small and medium sized vessels. We believe this to be the first in depth analysis of these mediators of inflammation in JIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.