One effective strategy to improve the performance of perovskite solar cells (PSCs) is to develop new hole transport layers (HTLs). In this work, a simple polyelectrolyte HTL, copper (II) poly(styrene sulfonate) (Cu:PSS), which comprises easily reduced Cu2+ counter‐ions with an anionic PSS polyelectrolyte backbone is investigated. Photoelectron spectroscopy reveals an increase in the work function of the anode and upward band bending effect upon incorporation of Cu:PSS in PSC devices. Cu:PSS shows a synergistic effect when mixed with polyethylenedioxythiophene: polystyrenesulfonate (PEDOT:PSS) in various proportions and results in a decrease in the acidity of PEDOT:PSS as well as reduced hysteresis in completed devices. Cu:PSS functions effectively as a HTL in PSCs, with device parameters comparable to PEDOT:PSS, while mixtures of Cu:PSS with PEDOT:PSS shows greatly improved performance compared to PEDOT:PSS alone. Optimized devices incorporating Cu:PSS/PEDOT:PSS mixtures show an improvement in efficiency from 14.35 to 19.44% using a simple CH3NH3PbI3 active layer in an inverted (P‐I‐N) geometry, which is one of the highest values yet reported for this type of device. It is expected that this type of HTL can be employed to create p‐type contacts and improve performance in other types of semiconducting devices as well.
In article number 2009246, Jung Hwa Seo, Bright Walker, and co‐workers demonstrate that a simple Cu(II) polyelectrolyte is able to create effective p‐type junctions in perovskite solar cells by creating an interfacial dipole which effectively alters the energy band structure to extract positively charged holes. This innovation is used to greatly improve the performance of methylammonium lead iodide perovskite solar cells.
Despite the exceptional efficiency of perovskite solar cells (PSCs), further improvements can be made to bring their power conversion efficiencies (PCE) closer to the Shockley‐Queisser limit, while the development of cost‐effective strategies to produce high‐performance devices are needed for them to reach their potential as a widespread energy source. In this context, there is a need to improve existing charge transport layers (CTLs) or introduce new CTLs. In this contribution, we introduced a new polyelectrolyte (lithium poly(styrene sulfonate (PSS))) (Li:PSS) polyelectrolyte as an HTL in inverted PSCs, where Li+ can act as a counter ion for the PSS backbone. The negative charge on the PSS backbone can stabilize the presence of p‐type carriers and p‐doping at the anode. Simple Li:PSS performed poorly due to poor surface coverage and voids existence in perovskite film as well as low conductivity. PEDOT:PSS was added to increase the conductivity to the simple Li:PSS solution before its use which also resulted in lower performance. Furthermore, a bilayer of PEDOT:PSS and Li:PSS was employed, which outperformed simple PEDOT:PSS due to high quality of perovskite film with large grain size also the large electron injection barrier (ϕe) impeded back diffusion of electrons towards anode. As a consequence, devices employing PEDOT:PSS / Li:PSS bilayers gave the highest PCE of 18.64%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.