The interaction between ionic moieties and the electronic properties of organic and hybrid semiconductors can yield a variety of interesting and sometimes surprising effects. Ionic moieties can induce interface dipoles,...
We report high-efficiency and long-lifetime inverted green cadmium-free (InP-based) quantum dot light-emitting diodes (QLEDs) using a stable ZnO/ZnS cascaded electron transport layer (ETL). We have successfully developed a strategy to spin-coat stable ZnS ETLs with a relatively higher conduction band minimum (CBM) and lower electron mobility than that of ZnO, which leads to balanced carrier injection and an improved device lifetime. Analysis shows that by using the ZnO/ZnS cascaded ETL, electron injection is reduced, resulting in an improved charge balance in the QD layer and suppressed exciton quenching, which preserves the emission properties of QDs. Optimized devices with ZnO/ZnS cascaded ETLs show a maximum external quantum efficiency of 10.8% and a maximum current efficiency of 37.5 cd/A; these efficiency values are an almost 2.2-fold improvement compared to those of reference devices without ZnS. The QLED devices also showed a remarkably long lifetime (LT 70 ) of 265 h at an initial luminance of 1000 cd/m 2 . The predicted half-lifetime (LT 50 ) at 100 cd/m 2 is 60,255 h, which, to our knowledge, is currently the longest lifetime yet reported for InP-based green QLEDs.
Efficient conversion of light from short wavelengths to longer wavelengths using color conversion layers (CCLs) underpins the successful operation of numerous contemporary display and lighting technologies. Inorganic quantum dots, based on CdSe or InP, for example, have received much attention in this context, however, suffer from instability and toxic cadmium or phosphine chemistry. Organic nanoparticles (NPs), though less often studied, are capable of very competitive performance, including outstanding stability and water-processability. Surfactants, which are critical in stabilizing many types of nano-structures, have not yet been used extensively in organic NPs. Here we show the utility of surfactants in the synthesis and processing of organic NPs by thoroughly characterizing the effect of ionic and non-ionic surfactants on the properties of fluorescent organic NPs. Using this information, we identify surfactant processing conditions that result in nearly 100 % conversion of organic fluorophores into sub-micrometer particles, or nano-dots, with outstanding performance as CCLs. Such water dispersions are environmentally benign and efficiently convert light. They can be used for a range of fluorophores covering a full spectral gamut, with excellent color purity, including full-width at half-maximum (FWHM) values as low as 21 nm. Compared to inorganic (InP) reference CCLs, the organic nano-dot based CCLs show superior color conversion efficiency and substantially improved long-term stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.