The activation of rabbit aortic smooth muscle was studied by two most widely used vascular smooth muscle stimulants: alpha-adrenoceptor activation by norepinephrine (NE) and high-K+ depolarization. This was studied by measurements of isometric contractions and net as well as unidirectional Ca2+ fluxes. These parameters showed markedly differential sensitivities towards tow smooth muscle inhibitors used in this study: D600 and amrinone. By choosing an appropriate concentration of D600 or amrinone, Ca2+ uptake or Ca2+ influx induced by high K+ or NE could by selectively inhibited. Furthermore, by using unidirectional flux measurements it was demonstrated that Ca2+ influx stimulated by NE and high K+ were additive in nature. The data from the addivity experiment exclude the interpretation of a common Ca2+ pathway with two separate mechanisms for opening it. The data on three criteria employed in this study provide evidence for the existence of two independent Ca2+ pathways, one for each mode of activation, for Ca2+ influx known to be associated with these contractions.
This study in isolated rabbit superior artery (RMA) investigated the interactions between glyburide, a known blocker of vascular ATP-sensitive K+ channels (Katp), and several chemically diverse potassium channel openers (PCOs): minoxidil sulfate (MNXS; 5 µM), pinacidil (1 µM), cromakalim (0.5 µM)and RP-49356 (1 µM;a PCO from Rhône Poulenc). Relaxation time courses for these PCOs were obtained in norepinephrine (NE; 5 µM)-precontracted RMA, and the concentrations of PCOs found to be equipotent to each other in terms of the degree of maximum relaxation (about 80%) and the time course of relaxation (within 15 min) were chosen for further study. This was taken as a functional indicator of a similar degree as well as similar kinetics of K+ channel opening by these PCOs. Pretreatment with glyburide (10-500 nM)produced a dose-dependent inhibition of the PCO relaxation time course. The glyburide IC50S against pinacidil, MNXS and RP-49356 were statistically similar and ranged from 72-79 nM. The glyburide IC50 against cromakalim was a modest 2-fold higher, at 148 nM. In contrast, pretreatment with charybdotoxin (200 nM) produced no significant inhibition of the maximum relaxation produced by these PCOs. Furthermore, glipizide, a sulfonylurea that is 10- to 25-fold less potent than glyburide for insulin secretion, was found to be 20- to 30-fold less potent than glyburide as a vascular KATP antagonist. These data suggest a mechanistic model in which these structurally diverse PCOs share a common critical step in the sequence of events leading to the KATP opening, and that glyburide interferes with this common critical step to produce a similar type of blockade against all four PCOs. Interaction studies with glyburide and pinacidil demonstrated 15 min to be the optimal pretreatment time for glyburide to produce maximal inhibition. Glyburide also reversed existing pinacidil relaxation regardless of the degree of pre-existing relaxation. These data suggest that glyburide is able to produce its blockade regardless of the state of K+ channel activation. Studies on the effect of pH (6.4 vs.7.3) showed that at acidic pH, pinacidil became less effective and the effectiveness of glyburide was significantly enhanced, whereas the actions of D600 remained unchanged. These data suggest the effects of both openers and blockers of the KATP are strongly pH dependent.
No abstract
The effects of a synthetic atrial peptide (atriopeptin II; AP II) on the agonist-induced intracellular Ca2+ release was examined in the isolated rabbit aorta. The agonist-induced phasic contraction in a Ca2+-free physiological salt solution containing 2 mM ethyleneglycol-bis(beta-aminoethyl-ether)-N,N'-tetraacetic acid (EGTA-PSS) was used as an indicator of the intracellular Ca2+ release. The addition of AP II (10(-9)-10(-7) M) for 15 min to the tissue during the EGTA-PSS exposure caused a dose-dependent inhibition of norepinephrine (NE; 10(-6) M)-induced phasic contraction. The half-maximal inhibiting concentration of AP II was 3 X 10(-9) M, with 10(-7) M AP II causing 91% inhibition. This was confirmed by studying the inhibitory effect of AP II (10(-7) M) on NE-stimulated 45Ca efflux. Furthermore, the internal Ca2+ release by histamine (10(-5) M) and caffeine (25 mM), both of which share this internal Ca2+ pool with NE, was also inhibited by AP II. Thus AP II appears to be a potent inhibitor of the intracellular Ca2+ release that is utilized by various agonists for the activation of vascular smooth muscle. This may be an important mechanism by which AP II produces relaxation of blood vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.