We present a detailed synchrotron x-ray scattering study of the charge-density-wave (CDW) order in simple tetragonal HgBa 2 CuO 4+δ (Hg1201). Resonant soft x-ray scattering measurements reveal that short-range order appears at a temperature that is distinctly lower than the pseudogap temperature and in excellent agreement with a prior transient reflectivity result. Despite considerable structural differences between Hg1201 and YBa 2 Cu 3 O 6+δ , the CDW correlations exhibit similar doping dependencies, and we demonstrate a universal relationship between the CDW wave vector and the size of the reconstructed Fermi pocket observed in quantum oscillation experiments. The CDW correlations in Hg1201 vanish already below optimal doping, once the correlation length is comparable to the CDW modulation period, and they appear to be limited by the disorder potential from unit cells hosting two interstitial oxygen atoms. A complementary hard x-ray diffraction measurement, performed on an underdoped Hg1201 sample in magnetic fields along the crystallographic c axis of up to 16 T, provides information on the form factor of the CDW order. As expected from the single-CuO 2 -layer structure of Hg1201, the CDW correlations vanish at half-integer values of L and appear to be peaked at integer L. We conclude that the atomic displacements associated with the short-range CDW order are mainly planar, within the CuO 2 layers.
N-Flourenylmethoxycarbonyl (Fmoc) phenylalanine (F) produces co-assembled organogel with 2aminoanthracene (AA) and 2-aminonaphthalene (NA) at a 1 : 1 molar ratio of the components. The deep green co-assembled F-AA gel is rigid and can be cut into different shapes. At lower concentration, 0.2% (w/v), it shows a mixture of fibre and flake morphology, while at 1.5% (w/v) concentration only flake morphology is observed but the F-NA co-assembled gel produces tape morphology. The powder diffraction data of F-AA co-assembled gel indicate p-p stacking and lamellar packing which is supported by DFT calculation. The melting point of F gel is 15 C higher over F-AA gel but the gel strength and stiffness of the F-AA co-assembled gel is 94 and 2.5 times higher than that of F gel. The F gel shows a smooth gel breaking point at 4 Pa but the F-AA co-assembled gel shows only a slippage at 160 Pa due to its high stiffness. The UV-vis spectra suggest the formation of H-aggregates and a charge transfer complex in the F-AA gel. The emission peak of AA shows a red shift in the F-AA co-assembled gel where both fluorescence intensity and peak position decrease with an increase in temperature. The F-AA xerogel shows semiconducting behaviour with a dc conductivity value 2.3 Â 10 À8 S cm À1 and the I-V characteristic curves indicate a semiconducting nature with a signature of negative differential resistance.
We present a combined study with time-domain terahertz and conventional far-infrared ellipsometry of the temperature dependent optical response of SrTiO3 thin films (82 and 8.5 nm) that are grown by pulsed-laser deposition on LSAT substrates. We demonstrate that terahertz ellipsometry is very sensitive to the optical response of these thin films, in particular, to the soft mode of SrTiO3. We show that for the 82 nm film the eigenfrequency of the soft mode is strongly reduced by annealing at 1200 • C, whereas for the 8.5 nm film it is hardly affected. For the latter, after annealing the mode remains at 125 cm −1 at 300 K and exhibits only a weak softening to about 90 cm −1 at 10 K. This suggests that this ultrathin film undergoes hardly any relaxation of the compressive strain due to the LSAT substrate.
The performance of double hybrid density functionals (DHDFs) has been assessed by studying the spectroscopic properties and potential energy curves of OCS-C2H4 (carbonyl sulfide-ethylene) and OCS-C4H6 (carbonyl sulfide-dimethylacetylene) van der Waals complexes. Both dispersion corrected and uncorrected DHDF theories have been applied to study the intermolecular interaction energies, stability, spectroscopic parameters, rigidity, and binding energies or depths of the potential well of the weakly bound complexes and also to explore the possibility of formation of three isomers of each complex. The correlation consistent valence triple zeta quality basis set is used to investigate the complexes. The calculated results provide insight into the computational methods applied to the weakly bound complexes. The double hybrid density functional B2PLYP and mPW2PLYP methods with dispersion corrections (B2PLYP-D2, B2PLYP-D3 and mPW2PLYP-D2, mPW2PLYP-D3) performed better over the B2PLYP and mPW2PLYP density functional methods without dispersion correction to deal with the weak dispersion interaction that prevails in these complexes. The results obtained by the dispersion-corrected density functional mPW2PLYP-D2 and mPW2PLYP-D3 methods agree very well with the earlier experimental values wherever available. The contributing components of the interaction energy have been analyzed by the symmetry-adapted perturbation theory (SAPT, here, SAPT0) to get insight into the interaction energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.