By means of the explicit dynamic finite element method, the relationship between the tool-workpiece interfacial slip and several cross wedge rolling (CWR) variables is investigated for a flat-wedge CWR process. After defining the components of interfacial slip and area reduction, an experimentally validated finite element model of CWR is introduced. This model is used to analyze a total of 189 distinct operating conditions by varying workpiece material (aluminum 1100, steel 1018 and brass C21000), forming velocity 0.4∼4.0 m/s, area reduction (25 percent, 40 percent and 55 percent) and forming angle (20 deg, 30 deg and 40 deg). The numerical results indicated that forming velocity was an important variable in determining the interfacial slip characteristics of the CWR process analyzed. Additionally, the area reduction and forming angle were found to have a significant influence on the interfacial slip under the conditions considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.