We report a first-principles study on the elastic, vibrational, and electronic properties of the recently synthesized phosphorene. By calculating the Grüneisen parameters, we evaluate the frequency shift of the Raman and infrared active modes via symmetric biaxial strain. We also study a strain-induced semiconductor-metal transition, the gap size, and the effective mass of carriers in various strain configurations. Furthermore, we unfold the emergence of a peculiar Dirac-shaped dispersion for specific strain conditions including the zigzag-oriented tensile strain. The observed linear energy spectrum has distinct velocities corresponding to each of its linear branches and is limited to the -X direction in the first Brillouin zone.
Identification of gas molecules plays a key role a wide range of applications extending from healthcare to security. However, the most widely used gas nano-sensors are based on electrical approaches or refractive index sensing, which typically are unable to identify molecular species. Here, we report label-free identification of gas molecules SO
2
, NO
2
, N
2
O, and NO by detecting their rotational-vibrational modes using graphene plasmon. The detected signal corresponds to a gas molecule layer adsorbed on the graphene surface with a concentration of 800 zeptomole per μm
2
, which is made possible by the strong field confinement of graphene plasmons and high physisorption of gas molecules on the graphene nanoribbons. We further demonstrate a fast response time (<1 min) of our devices, which enables real-time monitoring of gaseous chemical reactions. The demonstration and understanding of gas molecule identification using graphene plasmonic nanostructures open the door to various emerging applications, including in-breath diagnostics and monitoring of volatile organic compounds.
Recently, two-dimensional (2D) materials, including graphene, various transition metal dichalcogenides, hexagonal boron nitride and black phosphorus (BP), have shown great potential
Recently, it was demonstrated that a graphene/dielectric/metal configuration can support 'acoustic plasmons', which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acoustic plasmons supported in a monolayer and multilayers of black phosphorus (BP) placed just a few nanometers above a conducting plate. In the presence of a conducting plate, the acoustic plasmon dispersion for the armchair direction is found to exhibit the characteristic linear scaling in the mid-and far-infrared regime while it largely deviates from that in the long-wavelength limit and near-infrared regime.For the zigzag direction, such scaling behavior is not evident due to relatively tighter plasmon confinement. Further, we demonstrate a new design for an acoustic plasmon resonator that exhibits higher plasmon confinement and resonance efficiency than BP ribbon resonators in the mid-infrared and longer wavelength regime. Theoretical framework and new resonator design studied here provide a practical route toward the experimental verification of the acoustic plasmons in BP and open up the possibility to develop novel plasmonic and optoelectronic devices that can leverage its strong in-plane anisotropy and thickness-dependent band gap.KEYWORDS. black phosphorus, acoustic plasmon, gap plasmon, surface plasmon polaritons, anisotropy, two-dimensional material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.