Abstract:The early development of a novel micro-photonic based sensing architecture for use in selective herbicide spraying systems performing noncontact spectral reflectance measurements of plants and soil in real time has been described. A combination module allows three laser diodes of different wavelengths to sequentially emit identically polarized light beams through a common aperture, along one optical path. Each exiting beam enters an optical structure which generates up to 14 parallel laser beams. A pair of combination modules and optical structures generates 28 beams over a 420mm span which illuminates the plants from above. The intensity of the reflected light from each spot is detected by a high speed line scan image sensor. Plant discrimination is based on analyzing the Gaussian profile of reflected laser light at distinguishing wavelengths. Two slopes in the spectral response curves from 635nm to 670nm and 670nm to 785nm are used to discriminate different plants. Furthermore, by using a finely spaced and collimated laser beam array, instead of an un-collimated light source, detection of narrow leaved plants with a width greater than 20mm is achievable.
This paper descrbes a motionless laser scanning architecture consisting of few components and no moving parts. While laser scanning by beam deflection mechanisms hold many advantages over conventional bi-static IR sensors and radio and microwave frequency intruder detection, inherent flaws exist relating to the wear and tear of the deflecting mirror and its electro-mechanical driving components. In the proposd approach, many beams are generated in an ordered fashion from a custom designed optical resonator with special coatings applied; resulting in a projected spot pattem over a wide angle.
Abstract:Beam deflection methods such as rotary mirrors and motorized turning optical heads suffer from a variety of electro-mechanical related problems which affect laser scanning performance. These include wobble, jitter, wear, windage and synchronization issues. A novel optical structure consisting of two concentric and cylindrical interfaces with unique optical coating properties for the static projection of a laser spot array over a wide angle is demonstrated. The resulting ray trajectory through the waveguide is modeled using linear equations. Spot size growth is modeled using previously defined ray transfer matrices for tilted optical elements. The model is validated by comparison with experimental spot size measurements for 20 transmitted beams. This novel form of spot projection can be used as the projection unit in optical sensing devices which range to multiple laser footprints.
Static laser scanning over a wide angle is demonstrated by ranging to 20 laser beams generated by a novel cylindrical quasi-cavity waveguide, using laser triangulation. Baseline distances and outgoing angles unique to each laser beam are calculated by modelling the triangulation arrangement using a system of linear equations and plotting principal rays. The quasi-cavity waveguide, imaging lens and focal plane are also plotted. The system is calibrated by finding optimal values for uncertain instrumental parameters using constrained non-linear optimization. Distances calculated over 5m indoors result in accuracies above 93%. Discrete laser spectroscopy using 640nm and 785nm laser diodes is also demonstrated. Both injected laser beams follow the same optical path through the quasi-cavity waveguide, enabling spectral measurements to be made from the same point on an object for both wavelengths. The reflected red and infrared laser light is digitally recorded by a CCD imager and differences in reflected intensity enable discrimination between various natural objects. This provides more complete information about the perturbing object, including its 3D coordinates as well as limited identification of its surface material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.