Mast Cells (MCs) are one of the first immune cells encountered by invading pathogens. Their presence in large numbers in the superficial dermis, where Leishmania is encountered, suggests that they may play a critical role in immune responses to Leishmania. In this study the interactions of Leishmania donovani, the causative agent of visceral Leishmaniasis, and Leishmania tropica, the causative agent of cutaneous Leishmaniasis with MCs were studied. Co-culture of Leishmania with Peritoneal Mast Cells (PMCs) from BALB/c mice and Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of L. tropica and to a lesser extent of L. donovani. Also, while there was significant uptake of L. tropica by MCs, L. donovani was not phagocytosed. There was significant generation of Reactive Oxygen Species (ROS) by MCs on co-culture with these species of Leishmania which may contribute to their clearance. Interactions of MCs with Leishmania led to generation of MC extracellular traps comprising of DNA, histones and tryptase probably to ensnare these pathogens. These results clearly establish that MCs may contribute to host defences to Leishmania in a differential manner, by actively taking up these pathogens, and also by mounting effector responses for their clearance by extracellular means.
Background Leishmania donovani is the etiological agent of visceral leishmaniasis (VL) in the Indian subcontinent. However, it is also known to cause cutaneous leishmaniasis (CL) in Sri Lanka. Sri Lankan L. donovani differs from other L. donovani strains, both at the molecular and biochemical level. To investigate the different species or strain-specific differences of L. donovani in Sri Lanka we evaluated sequence variation of the kinetoplastid DNA (kDNA).MethodsParasites isolated from skin lesions of 34 CL patients and bone marrow aspirates from 4 VL patients were genotyped using the kDNA minicircle PCR analysis. A total of 301 minicircle sequences that included sequences from Sri Lanka, India, Nepal and six reference species of Leishmania were analyzed.ResultsHaplotype diversity of Sri Lankan isolates were high (H d = 0.757) with strong inter-geographical genetic differentiation (F ST > 0.25). In this study, L. donovani isolates clustered according to their geographic origin, while Sri Lankan isolates formed a separate cluster and were clearly distinct from other Leishmania species. Within the Sri Lankan group, there were three distinct sub-clusters formed, from CL patients who responded to standard antimony therapy, CL patients who responded poorly to antimony therapy and from VL patients. There was no specific clustering of sequences based on geographical origin within Sri Lanka.ConclusionThis study reveals high levels of haplotype diversity of L. donovani in Sri Lanka with a distinct genetic association with clinically relevant phenotypic characteristics. The use of genetic tools to identify clinically relevant features of Leishmania parasites has important therapeutic implications for leishmaniasis.Electronic supplementary materialThe online version of this article (10.1186/s12879-017-2883-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.