Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment.DOI:
http://dx.doi.org/10.7554/eLife.12613.001
Relapse in one-fifth of the MIL-treated patients observed in our study is an alarming signal for the VL elimination campaign, urging for further review and cohort monitoring.
Whole genome sequencing (WGS) is increasingly used for molecular diagnosis and epidemiology of infectious diseases. Current Leishmania genomic studies rely on DNA extracted from cultured parasites, which might introduce sampling and biological biases into the subsequent analyses. Up to now, direct analysis of Leishmania genome in clinical samples is hampered by high levels of human DNA and large variation in parasite load in clinical samples. Here, we present a method, based on target enrichment of Leishmania donovani DNA with Agilent SureSelect technology, that allows the analysis of Leishmania genomes directly in clinical samples. We validated our protocol with a set of artificially mixed samples, followed by the analysis of 63 clinical samples (bone marrow or spleen aspirates) from visceral leishmaniasis patients in Nepal. We were able to identify genotypes using a set of diagnostic SNPs in almost all of these samples (97%) and access comprehensive genome-wide information in most (83%). This allowed us to perform phylogenomic analysis, assess chromosome copy number and identify large copy number variants (CNVs). Pairwise comparisons between the parasite genomes in clinical samples and derived in vitro cultured promastigotes showed a lower aneuploidy in amastigotes as well as genomic differences, suggesting polyclonal infections in patients. Altogether our results underline the need for sequencing parasite genomes directly in the host samples
Leishmania donovani is an intracellular protozoan parasite that causes leishmaniasis, which can range from a self-healing cutaneous disease to a fatal visceral disease depending on the infecting species. Miltefosine is currently the latest and only oral antileishmanial that came out of drug discovery pipelines in the past few decades, but recent reports indicate a significant decline in its efficacy against visceral leishmaniasis (also known as kala-azar) in the Indian subcontinent. This relapse rate of up to 20% within 12 months after treatment was shown not to be related to reinfection, drug quality, drug exposure, or drug-resistant parasites. We therefore aimed to assess other phenotypes of the parasite that may affect treatment outcome and found a significant association between the number of metacyclic parasites, parasite infectivity, and patient treatment outcome in the Indian subcontinent. Together with previous studies on resistance of L. donovani against pentavalent antimonials, these data suggest that the infectivity of the parasite, or related phenotypes, might be a more determinant factor for treatment failure in visceral leishmaniasis than drug susceptibility, warranting a reassessment of our current view on treatment failure and drug resistance in leishmaniasis and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.