Bacillus thuringiensis (Bt) based insecticidal formulations have been recognized as one of the most successful, environmentally safe and sustainable method of controlling insect pests. Research teams worldwide are in search of Bt diversity giving more choices of bio-insecticides and alternatives to address insect resistance. In fact, there are many unexplored ecologies that could harbor novel Bt strains. This study is the first initiative to explore Bt strain diversity in Qatar. A collection of 700 Bt isolates was constructed. Scanning electron microscopy of Bt crystals showed different crystal forms, with a high abundance of spherical crystals compared to the bipyramidal ones. Among the spherical crystals, four different morphologies were observed. The δ-endotoxin content of parasporal crystals from each Bt isolate revealed that there are 16 different protein profiles among the isolates of the collection. On the other hand, plasmid pattern analysis showed seven different plasmid profiles. Their insecticidal activity was predicted by exploring the δ-endotoxin coding genes and conducting qualitative insecticidal bioassays. 19 smooth spherical crystal producing isolates have been identified that could be possible candidates for endotoxin production targeting Dipteran insects. Another group of 259 isolates producing bipyramidal and cuboidal crystals could target Lepidopteran and Coleopteran insects. The remaining 422 isolates have novel profiles. In conclusion, Qatari soil ecology provides a good collection and diversity of Bt isolates. In addition to strains harboring genes encoding common endotoxins, the majority are different and very promising for the search of novel insecticidal endotoxins.
Bacillus thuringiensis (Bt) is a Gram-positive soil bacterium that has been recognized as an effective bioinsecticide active against plant, animal and human pathogenic and disease vector insects. During its sporulation phase, Bt produces crystals consisting of δ-endotoxins, which upon ingestion kill specifically insect larvae. Bt subsp. israelensis (Bti) is very active against dipteran insects. Bti based bioinsecticides are considered as a sustainable solution to control the Dipteran insects responsible of plant, animal and human diseases. In this study, Bti strains isolated from Qatar soil were analyzed for their insecticidal activities against the dipteran insect Aedes aegypti Bora Bora (Culicidae, Diptera) and for their δ-endotoxins yields per cell. Among the local Bti strains, four exceptional strains producing spherical crystals, were found to be more insecticidal than the reference strain Bti H14. When tested for their δ-endotoxin yield, the Bti QBT217 strain, producing typical spherical crystals and having the best insecticidal activity, was recognized as the best candidate strain for potential bioinsecticide production and biological control of dipteran insects, particularly the disease vector insect A. aegypti.
Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti) as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the β8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.