Aims: A study was conducted to evaluate decoloration of azo dye, Congo Red (CR) using fungal hyphal mat of beneficial bacidiomycete Termitomyces sp. TMS7 (MW694830) as bio sorbent material.
Study design: Completely randomized block design (CRD).
Place and duration of study: Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India, between September 2019 and January 2020.
Methodology: Isolation of white rot fungus from basidiocarb was done and screened based on their ligninolytic enzyme activity and Isolate TMS 7 was selected as best isolate and identified through ITS 1 and ITS 4 primers. Efficiency of fungal biomass to decolorize Congo red was assessed and per cent decoloration and kinetics were calculated.
Results: Twelve fungal isolates were obtained and Isolate TMS 7 was selected as best isolate based on enzymatic activity. TMS 7 was identified as Termitomyces sp. using ITS 1 and ITS 4 primer. Ligninolytic enzymes i.e. cellulase (9.97 µ mol of glucose released/min/mg protein), and xylanase (9.55 µ mol of xylose released/min/mg protein) were quantified from the crude fungal extract of TMS 7, which was higher than standard (Termitomyces albuminosus -MTCC 1366). Decolorisation efficiency of termitomyces fungal biomass (1 g/100 ml) against different concentration of congo red dye (50-250 mg/L) was assessed. About 100 % (99.9) degradation was recorded in the minimum dye concentration of 50 mg/L within 3 days and 8 % decoloration was achieved at the highest dye concentration (250 mg/L) within 5 days.
Conclusion: Possible mechanism of degradation is the presence of lignolytic enzyme especially cellulase, xylanase in the culture filtrate and bio sorption of degraded product by the fungal cell wall components viz., chitin, glucan other complex polymers.
The present study was aimed to explore the characterization of polyhydroxy butrate extracted from the bacterial strain under optimized conditions for the production of bioplastic. Under optimized fermentation conditions, Polyhydroxy butrate (PHB) was extracted and subjected to examine their properties via Thin Layer Chromotogram (TLC), Gas Chromotogram- Mass Spectrometer (GC-MS), Fourier Transform Infrared spectrum (FTIR). The presence of a brown spot in the TLC plate indicates the presence of hydroxylgroup which is similar to the polymer group. GC-MS analysis of extracted PHB shows peaks at the retention time of 3.8, 11.6 which is corresponding to octadecanoic acid, hexadecanoic acid, butyl -2-ethylester confirms the presence of polymeric nature in the extracted PHB. The absorption bands of FTIR at 1719–1720 cm −1 indicate the presence of C=O group of PHB. The absorption peaks at wave numbers 500-1000 cm -1 , 1055 cm -1 and 1230 cm -1 denotes (OH) group, (C–O) stretch and (C=O) ester group. From these results, it was confirmed that the extracted PHB is having the potential to replace petroleum plastic.
Cellulose is the integral component of lignocellulosic biomass which is found abundantly in nature. The lignocellulosic bioconversion is an emerging technology which utilizes microbes and their enzymes for serving the scientific community. In this study, about 126 isolates were isolated from the termite mound soil among which 81 isolates produced cellulase enzyme. Three isolates B12, B25 and B64 exhibited maximum enzyme activity and chosen for optimization parameters such as temperature, pH and incubation time. The isolates B12, B25 and B64 were identified based on 16S rRNA sequencing as Mesobacillus jeotgali, Lysin, Bacillus fusiformis and Bacillus sp respectively. The temperature, pH and incubation time for maximum cellulase production was optimized from the range and depicted that maximum activity at 40 o C, 7 and 60 hours respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.