Designing a combustion chamber for a gas turbine engine requires expensive tests with many iterations. A numerical analysis can be employed to reduce the number of design iterations by providing an insight into the characteristics of the flow. This present article describes a threedimensional numerical investigation of flow inside a model reverse-flow gas turbine combustor. In this computational work the entire model including the swirler has been selected for better accuracy. A finite volume non-staggered grid approach has been used and the pressure-velocity coupling is resolved using the SIMPLE algorithm. Comparisons are made between the standard k-ε turbulence model and the Reynolds stress turbulence model. Studies are performed to assess the velocity and pressure distributions at different locations in the combustor liner as well as the flow split through various holes on the liner surface. Overall, the predicted flow characteristics are found to be in reasonable agreement with the available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.