Simultaneous multi-slice EPI acquisition using parallel imaging can decrease the acquisition time for diffusion imaging and allow full-brain, high resolution fMRI acquisitions at a reduced TR. However, the unaliasing of simultaneously acquired, closely spaced slices can be difficult, leading to a high g-factor penalty. We introduce a method to create inter-slice image shifts in the phase encoding direction to increase the distance between aliasing pixels. The shift between the slices is induced using sign- and amplitude-modulated slice-select gradient blips simultaneous with the EPI phase encoding blips. This achieves the desired shifts but avoids an undesired “tilted voxel” blurring artifact associated with previous methods.
We validate the method in 3× slice-accelerated spin-echo and gradient-echo EPI at 3T and 7T using 32-channel RF coil brain arrays. The Monte-Carlo simulated average g-factor penalty of the 3-fold slice accelerated acquisition with inter-slice shifts is <1% at 3T (compared to 32% without slice-shift). Combining 3× slice acceleration with 2× in-plane acceleration, the g-factor penalty becomes 19% at 3T and 10% at 7T (compared to 41% and 23% without slice-shift). We demonstrate the potential of the method for accelerating diffusion imaging by comparing the fiber orientation uncertainty, where the three-fold faster acquisition showed no noticeable degradation.
Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non–rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.