Aerospace system efficiency improvement and capacity growth has fueled demand for innovative, affordable and scalable thermal management technologies. Recent advancements in additive manufacturing (AM) and materials has extended the thermal design space for heat exchangers, cold plates, heat sinks, and heat pipes. Novel heat transfer enhancement techniques, along with design and system interface innovations, offer attractive cooling solutions for use in numerous aircraft systems. These advances are becoming increasingly relevant in aircraft systems as customers are demanding the use of air-cooling instead of liquid-cooling with minimal impact on overall energy conversion efficiency, installed volume and weight.
This paper provides an overview of Boeing-led advances in analysis, design, fabrication and testing of next generation heat transfer devices. A case study is presented to provide insight into a methodology for selection of heat transfer surfaces and design optimization for an air-to-air heat exchanger. Design considerations are presented for additive manufacturing of the thermal management devices using a range of high performance materials including aluminum, titanium, stainless steel, and conductive polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.