To quantitatively evaluate the distribution of tuna larvae relative to oceanographic conditions, we conducted investigations off the Nansei Islands in the western North Pacific in June from 2015 to 2017. Five species, namely Pacific bluefin tuna Thunnus orientalis (PBF), yellowfin tuna T. albacares (YFT), skipjack tuna Katsuwonus pelamis (SKJ), frigate tuna Auxis thazard, and bullet tuna A. rochei (BT), were collected in each year. The most dominant species was BT throughout the 3 yr period, followed by SKJ in 2015 and YFT in 2016 and 2017. The horizontal larval distributions of the 5 species were largely influenced by the Kuroshio Current: larvae of the 2 Auxis species were distributed in the Kuroshio and the Kuroshio inshore waters, whereas those of the other species were found in the Kuroshio offshore waters. These differences are consistent with the differences in spawner distributions among the tunas. Generalized additive models (GAMs) indicated that the larval densities were affected by the sea surface height anomaly and that the larvae were not always amassed by horizontal transport. Sea surface temperature (SST) and salinity possibly influenced the larval physiology and survival, thereby determining their densities. In the GAMs, PBF and YFT showed similar responses to SST, and YFT and SKJ similarly responded to salinity. To avoid overlapping their ecological niches, the larvae of 3 species (PBF, YFT, and SKJ) are expected to differ in other ways, including their vertical distributions and feeding habits.
Recent studies have revealed the impact of the drastic climate change during the last glacial period on coastal marine and anadromous species in the marginal seas of the northwestern Pacific Ocean; however, its influence on deep-sea species remains poorly understood. To compare the effects of the last glacial period on populations from the Sea of Japan and the Sea of Okhotsk, we examined the mitochondrial control region and cytochrome b gene sequences of Lycodes matsubarai, a deepsea demersal fish that inhabits these two seas. Our results showed clear genetic differentiation of populations between the two seas. The populations may have diverged during the last glacial period, probably as a result of vicariance due to the drastic sea level change. The population in the Sea of Okhotsk was larger than that in the Sea of Japan, but suddenly decreased after the last glacial period. However, the Sea of Japan population expanded after the last glacial period, coincident with high levels of oxygenation in deep-sea areas. These results elucidate regional-scale impacts of climate change on deep-sea organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.