Sepsis is defined as life-threatening organ dysfunction caused by the dysregulated host response to infection. Despite serious mortality and morbidity, no sepsis-specific drugs exist. Endotoxemia is often used to model the hyperinflammation associated with early sepsis. This model classically uses lipopolysaccharide (LPS) from Gram-negative pathogens to activate the immune system, leading to hyperinflammation, microcirculatory disturbances and death. Other toxins may also be used to activate the immune system including Gram-positive peptidoglycan (PG) and lipoteichoic acid (LTA). In addition to these standard toxins, other bacterial components can induce inflammation. These molecules activate different signaling pathways and produce different physiological responses which can be taken advantage of for sepsis modeling. Endotoxemia modeling can provide information on pathways to inflammation in sepsis and contribute to preclinical drug development.
Iron is an essential element in multiple biochemical pathways in humans and pathogens. As part of the innate immune response in local infection, iron availability is restricted locally in order to reduce overproduction of reactive oxygen species by the host and to attenuate bacterial growth. This physiological regulation represents the rationale for the therapeutic use of iron chelators to support induced iron deprivation and to treat infections. In this review paper we discuss the importance of iron regulation through examples of local infection and the potential of iron chelation in treating infection.
Iron is an essential element for various physiological processes, but its levels must remain tightly regulated to avoid cellular damage. Similarly, iron plays a dual role in systemic inflammation, such as with sepsis. Leukocytes utilize iron to produce reactive oxygen species (ROS) to kill bacteria, but pathologically increased iron-catalyzed ROS production in sepsis can lead to damage of host cells, multi-organ failure and death. Temporary reduction in bioavailable iron represents a potential therapeutic target in sepsis. This study investigates the effect of the novel iron chelator, DIBI, in murine models of systemic (hyper-)inflammation: C57BL/6 mice were challenged with toxins from Gram-positive (Staphylococcus aureus: lipoteichoic acid, peptidoglycan) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae: lipopolysaccharide). Intravital microscopy (IVM) was performed to assess immune cell activation and its impact on microvascular blood flow in vivo in the microcirculation of the gut. Plasma inflammatory mediators were measured via multiplex assay, and morphologic change in intestinal tissue was evaluated. DIBI treatment decreased leukocyte (hyper-)activation induced by Gram-positive and Gram-negative toxins. In some cases, it preserved capillary perfusion, reduced plasma inflammatory markers and attenuated tissue damage. These findings support the utility of DIBI as a novel treatment for systemic inflammation, e.g., sepsis.
Because of its unique microvascular anatomy, the intestine is particularly vulnerable to microcirculatory disturbances. During inflammation, pathological changes in blood flow, vessel integrity and capillary density result in impaired tissue oxygenation. In severe cases, these changes can progress to multiorgan failure and possibly death. Microcirculation may be evaluated in superficial tissues in patients using video microscopy devices, but these techniques do not allow the assessment of intestinal microcirculation. The gold standard for the experimental evaluation of intestinal microcirculation is intravital microscopy, a technique that allows for the in vivo examination of many pathophysiological processes including leukocyte-endothelial interactions and capillary blood flow. This review provides an overview of changes in the intestinal microcirculation in various acute and chronic inflammatory conditions. Acute conditions discussed include local infections, severe acute pancreatitis, necrotizing enterocolitis and sepsis. Inflammatory bowel disease and irritable bowel syndrome are included as examples of chronic conditions of the intestine.
BACKGROUND: Sepsis is the result of a dysregulated host immune response to an infection. An ideal therapy would target both the underlying infection and the dysregulated immune response. DIBI, a novel iron-binding polymer, was specifically developed as an antimicrobial agent and has also demonstrated in vivo anti-inflammatory properties. OBJECTIVE: This study aimed to further investigate the effects of DIBI with and without the antibiotic imipenem (IMI) in colon ascendens stent peritonitis (CASP)-induced experimental sepsis. METHODS: Vehicle, DIBI and/or IMI were administered in C57BL/6 mice after CASP surgery. Intestinal leukocyte activation and capillary perfusion was evaluated by intravital microscopy. Moreover, bacterial load in peritoneal lavage fluid and blood, and plasma cytokine levels were assessed. In a second series of experiments, surgery to repair the colon was performed at 5 hr and these mice were followed for long-term survival over 7 days. RESULTS: DIBI reduced leukocyte adhesion, improved capillary blood flow, and decreased key plasma cytokines levels. DIBI also improved survival of infected mice and greatly improved IMI efficacy. Survivors treated with IMI and DIBI were found to be free of systemic infection. CONCLUSIONS: DIBI has promising potential for sepsis treatment including its use as a sole or an adjunct therapeutic with antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.