Objective. Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings offer a high spatiotemporal resolution approach to study human brain and understand the underlying mechanisms mediating cognitive and behavioral processes. However, the high susceptibility of EEG to MRI-induced artifacts hinders a broad adaptation of this approach. More specifically, EEG data collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram artifacts, in addition to artifacts of physiological origin. There have been several attempts for reducing these artifacts with manual and time-consuming pre-processing, which may result in biasing EEG data due to variations in selecting steps order, parameters, and classification of artifactual independent components. Thus, there is a strong urge to develop a fully automatic and comprehensive pipeline for reducing all major EEG artifacts. In this work, we introduced an open-access toolbox with a fully automatic pipeline for reducing artifacts from EEG data collected simultaneously with fMRI (refer to APPEAR). Approach. The pipeline integrates average template subtraction and independent component analysis to suppress both MRI-related and physiological artifacts. To validate our results, we tested APPEAR on EEG data recorded from healthy control subjects during resting-state (n= 48) and task-based (i.e. event-related-potentials (ERPs); n= 8) paradigms. The chosen gold standard is an expert manual review of the EEG database. Main results. We compared manually and automated corrected EEG data during resting-state using frequency analysis and continuous wavelet transformation and found no significant differences between the two corrections. A comparison between ERP data recorded during a so-called stop-signal task (e.g. amplitude measures and signal-to-noise ratio) also showed no differences between the manually and fully automatic fMRI-EEG-corrected data. Significance. APPEAR offers the first comprehensive open-source toolbox that can speed up advancement of EEG analysis and enhance replication by avoiding experimenters’ preferences while allowing for processing large EEG-fMRI cohorts composed of hundreds of subjects with manageable researcher time and effort.
Analysis of peripheral venous pressure (PVP) waveforms is a novel method of monitoring intravascular volume. Two pediatric cohorts were studied to test the effect of anesthetic agents on the PVP waveform and cross-talk between peripheral veins and arteries: (1) dehydration setting in a pyloromyotomy using the infused anesthetic propofol and (2) hemorrhage setting during elective surgery for craniosynostosis with the inhaled anesthetic isoflurane. PVP waveforms were collected from 39 patients that received propofol and 9 that received isoflurane. A multiple analysis of variance test determined if anesthetics influence the PVP waveform. A prediction system was built using k-nearest neighbor (k-NN) to distinguish between: (1) PVP waveforms with and without propofol and (2) different minimum alveolar concentration (MAC) groups of isoflurane. 52 porcine, 5 propofol, and 7 isoflurane subjects were used to determine the cross-talk between veins and arteries at the heart and respiratory rate frequency during: (a) during and after bleeding with constant anesthesia, (b) before and after propofol, and (c) at each MAC value. PVP waveforms are influenced by anesthetics, determined by MANOVA: p value < 0.01, η2 = 0.478 for hypovolemic, and η2 = 0.388 for euvolemic conditions. The k-NN prediction models had 82% and 77% accuracy for detecting propofol and MAC, respectively. The cross-talk relationship at each stage was: (a) ρ = 0.95, (b) ρ = 0.96, and (c) could not be evaluated using this cohort. Future research should consider anesthetic agents when analyzing PVP waveforms developing future clinical monitoring technology that uses PVP.
The current bias in the STEM academy favors English-language research publications, creating a barrier between English-speaking and non-English speaking researchers that is detrimental to the continuity and evolution of STEM research. In this paper, we lay out policy measures that employ U.S. government resources to create infrastructure that standardizes and facilitates the language translation process and hosting of multilingual publications. This proposal aims to increase linguistic diversity in academic STEM publications for the ultimate goal of improving global scientific communication and ameliorating the existing disparity between English and non-English STEM literature.
Le parti pris actuel de l'académie STEM (science technologie ingénierie et mathématique) favorise les publications de recherche en anglais, créant une barrière entre les chercheurs anglophones et non anglophones qui nuit à la continuité et à l'évolution de la recherche STEM. Dans cet article, nous présentons des mesures politiques qui utilisent les ressources du gouvernement américain pour créer une infrastructure qui normalise et facilite le processus de traduction linguistique et l'hébergement de publications multilingues. Cette proposition vise à accroître la diversité linguistique dans les publications académiques STEM dans le but ultime d'améliorer la communication scientifique mondiale et d'améliorer la disparité existante entre la littérature STEM anglaise et non anglaise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.