We recently reported that induced pluripotent stem cells (iPSCs) prepared from different human origins acquired similar glycan profiles to one another as well as to human embryonic stem cells. Although the results strongly suggested attainment of specific glycan expressions associated with the acquisition of pluripotency, the detailed glycan structures remained to be elucidated. Here, we perform a quantitative glycome analysis targeting both N-and Olinked glycans derived from 201B7 human iPSCs and human dermal fibroblasts as undifferentiated and differentiated cells, respectively. Overall, the fractions of high mannose-type N-linked glycans were significantly increased upon induction of pluripotency. Moreover, it became evident that the type of linkage of Sia on N-linked glycans was dramatically changed from ␣-2-3 to ␣-2-6, and the expression of ␣-1-2 fucose and type 1 LacNAc structures became clearly apparent, while no such glycan epitopes were detected in fibroblasts. The expression profiles of relevant glycosyltransferase genes were fully consistent with these results. These observations indicate unambiguously the manifestation of a "glycome shift" upon conversion to iPSCs, which may not merely be the result of the initialization of gene expression, but could be involved in a more aggressive manner either in the acquisition or maintenance of the undifferentiated state of iPSCs. Molecular
) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:265-273
Human somatic stem cells such as human mesenchymal stem cells (hMSCs) are considered attractive cell sources for stem cell-based therapy. However, quality control issues have been raised concerning their safety and efficacy. Here we used lectin microarray technology to identify cell surface glycans as markers of the differentiation potential of stem cells. We found that α2-6Sia-specific lectins show stronger binding to early passage adipose-derived hMSCs (with differentiation ability) than late passage cells (without the ability to differentiate). Flow cytometry analysis using α2-6Sia-specific lectins supported the results obtained by lectin microarray. Similar results were obtained for bone marrow-derived hMSCs and cartilage tissue-derived chondrocytes. Little or no binding of α2-6Sia-specific lectins was observed for human dermal fibroblasts, which are unable to differentiate, suggesting that the binding of α2-6Sia-specific lectins is associated with the differentiation ability of cells, but not to their capacity to proliferate. Quantitative analysis of the linkage mode of Sia using anion-exchange chromatography showed that the percentage of α2-6Sia linkage type was higher in early passage adipose-derived hMSCs than late passage cells. Integrinα5 was found to be a carrier protein of α2-6Sia. Sialidase treatment significantly reduced the differentiation efficiency of bone marrow-derived hMSCs. Based on these findings, we propose that α2-6sialylation is a marker of differentiation potential in stem cells such as adipose-derived hMSCs, bone marrow-derived hMSCs, and cartilage tissue-derived chondrocytes.
Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such, they hold promise for use in stem cell-based therapies. However, no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously, we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that α2–6-sialylation is a marker of the differentiation potential of these cells. Nevertheless, no information was available about the structural details of these of α2–6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs), human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of α2–6-sialylated N-glycans was detected in early passage cells (24–28 % of sialylated N-glycans) compared with late passage cells (13–15 %). A major α2–6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes, Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast, no significant differences were observed between early and late passage hMSCs with respect to α2–6-sialylated O-glycan percentages. These results demonstrate that levels of α2–6-sialylated N-glycans, but not O-glycans, could be used as markers of the differential potential of hMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.