Human somatic stem cells such as human mesenchymal stem cells (hMSCs) are considered attractive cell sources for stem cell-based therapy. However, quality control issues have been raised concerning their safety and efficacy. Here we used lectin microarray technology to identify cell surface glycans as markers of the differentiation potential of stem cells. We found that α2-6Sia-specific lectins show stronger binding to early passage adipose-derived hMSCs (with differentiation ability) than late passage cells (without the ability to differentiate). Flow cytometry analysis using α2-6Sia-specific lectins supported the results obtained by lectin microarray. Similar results were obtained for bone marrow-derived hMSCs and cartilage tissue-derived chondrocytes. Little or no binding of α2-6Sia-specific lectins was observed for human dermal fibroblasts, which are unable to differentiate, suggesting that the binding of α2-6Sia-specific lectins is associated with the differentiation ability of cells, but not to their capacity to proliferate. Quantitative analysis of the linkage mode of Sia using anion-exchange chromatography showed that the percentage of α2-6Sia linkage type was higher in early passage adipose-derived hMSCs than late passage cells. Integrinα5 was found to be a carrier protein of α2-6Sia. Sialidase treatment significantly reduced the differentiation efficiency of bone marrow-derived hMSCs. Based on these findings, we propose that α2-6sialylation is a marker of differentiation potential in stem cells such as adipose-derived hMSCs, bone marrow-derived hMSCs, and cartilage tissue-derived chondrocytes.
Glycans are one of the major building blocks of extracellular vesicles (EVs). However, their roles and applications have not been completely explored. Here, we analyzed the glycome of EVs derived from human induced pluripotent stem cells (hiPSCs) using high-density lectin microarray. The glycan profiles of hiPSC-derived EVs were different from those of non-hiPSC-derived EVs. Moreover, rBC2LCN that shows specific binding to hiPSCs, showed strong specificity for hiPSC-derived EVs but not non-hiPSCs-derived EVs. Further, other hiPSC-specific probes, such as anti-TRA-1-60, anti-SSEA4, and anti-R-10G, exhibited specific, but weaker binding to hiPSC-derived EVs than rBC2LCN. We then developed a sandwich assay using rBC2LCN and a phosphatidylserine receptor, Tim4, to specifically detect hiPSC-derived EVs. The Tim4–rBC2LCN sandwich assay allowed for specific detection of hiPSC-derived EVs but not non-hiPSC-derived EVs, indicating that rBC2LCN could also be used for the specific detection of hiPSC-derived EVs. Together, our findings demonstrate that the characteristic glycan signature of hiPSCs are retained by EVs derived from them. The EV glycome could be novel targets for the identification and characterization of stem cells for use in regenerative medicine.
The rBC2LCN lectin, known as a stem cell marker probe that binds to an H type 3 fucosylated trisaccharide motif, was recently revealed to also bind to pancreatic ductal adenocarcinoma (PDAC) cells. A lectin‐drug conjugate was generated by fusing rBC2LCN with a cytocidal toxin, and it showed a strong anticancer effect in in vitro and in vivo PDAC models. However, it is unclear which molecules are carrier proteins of rBC2LCN on PDAC cells. In this study, we identified a rBC2LCN‐positive glycoprotein expressed in PDAC. Tumor lysates of PDAC patient‐derived xenografts (PDXs) were coprecipitated with rBC2LCN lectin and analyzed by liquid chromatography–mass spectrometry. A total of 343 proteins were initially identified. We used a web‐based database to select five glycoproteins and independently evaluated their expression in PDAC by immunohistochemistry (IHC). Among them, we focused on carcinoembryonic antigen 5 (CEA) as the most cancer‐specific carrier protein in PDAC, as it showed the most prominent difference in expression rate between PDAC cells (74%) and normal pancreatic duct cells (0%, P > .0001). rBC2LCN lectin and CEA colocalization in PDAC samples was confirmed by double‐staining analysis. Furthermore, rBC2LCN‐precipitated fractions were blotted with an anti‐CEA polyclonal antibody (pAb), and CEA pAb–precipitated fractions were blotted with rBC2LCN lectin. The results demonstrate that CEA is in fact a ligand of rBC2LCN lectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.