This paper reports on a method to directly measure the contractile forces of cardiomyocytes using MEMS (micro electro mechanical systems)-based force sensors. The fabricated sensor chip consists of piezoresistive cantilevers that can measure contractile forces with high frequency (several tens of kHz) and high sensing resolution (less than 0.1 nN). Moreover, the proposed method does not require a complex observation system or image processing, which are necessary in conventional optical-based methods. This paper describes the design, fabrication, and evaluation of the proposed device and demonstrates the direct measurements of contractile forces of cardiomyocytes using the fabricated device.
Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.
It is expected that human iPS cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat serious heart diseases. However, the properties and functions of human adult cardiomyocytes and hiPSC-CMs, including cell maturation, differ. In this study, we focused on the temperature dependence of hiPSC-CMs by integrating the temperature regulation system into our sensor platform, which can directly and quantitatively measure their mechanical motion. We measured the beating frequency of hiPSC-CMs at different environmental temperatures and found that the beating frequency increased as the temperature increased. Although the rate at which the beating frequency increased with temperature varied, the temperature at which the beating stopped was relatively stable at approximately 20 °C. The stopping of beating at this temperature was stable, even in immature hiPSC-CMs, and was considered to be a primitive property of cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.