Macrophage migration inhibitory factor (MIF) is a multifunctional protein that exhibits an intrinsic thiol protein oxidoreductase activity and proinflammatory activities. In the present study to examine intracellular MIF redox function, exposure of MIF-deficient cardiac fibroblasts to oxidizing conditions resulted in a 2.3-fold increase (p < 0.001) in intracellular ROS that could be significantly reduced by adenoviral-mediated reexpression of recombinant MIF. In an animal model of myocardial injury by ischemia/reperfusion (I/R), MIF-deficient hearts exhibited higher levels of oxidative stress than did wild-type hearts, as measured by significantly higher oxidized glutathione levels (decreased GSH/GSSG ratio), increased protein oxidation, reduced aconitase activity, and increased mitochondrial injury (increased cytochrome c release). The increased myocardial oxidative stress after I/R was reflected by larger infarct size (INF) in MIF-deficient hearts versus wild-type (WT) hearts (21 ± 6% vs. 8 ± 3% INF/LV; p < 0.05). In vivo hemodynamic measurements showed that left ventricular (LV) contractile function of MIF-deficient hearts subjected to 15-min ischemia failed to recover during reperfusion compared with WT hearts (LV developed pressure and ± dP/dt; p = 0.02). These data represent the first in vivo evidence in support of a cardioprotective role of MIF in the postischemic heart by reducing oxidative stress.
MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.
α‐Amino acids imidazolium salt smoothly reacted with diphenylcarbonate to afford the corresponding urethanes. The urethanes were activated by adding carboxylic acid to undergo selective cyclization, leading to successful development of a new phosgene‐free process for synthesizing α‐amino acid N‐carboxyanhydrides (NCAs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.