mRNA degradation plays an important role in the rapid and dynamic alteration of gene expression in response to environmental stimuli. Arabidopsis 5'-3' exoribonuclease (AtXRN4), a homolog of yeast Xrn1p, functions after a de-capping step in the degradation of uncapped RNAs. While Xrn1p-dependent degradation of mRNA is the main process of mRNA decay in yeast, information pertaining to the targets of XRN4-based degradation in plants is limited. In order to better understand the biological function of AtXRN4, the current study examined the survivability of atxrn4 mutants subjected to heat stress. The results indicated that atxrn4 mutants, compared with wild-type plants, exhibited an increased survival rate when subjected to a short-term severe heat stress. A microarray and mRNA decay assay showed that loss of AtXRN4 function caused a reduction in the degradation of heat shock factor A2 (HSFA2) and ethylene response factor 1 (ERF1) mRNA. The heat stress tolerance phenotype of atxrn4 mutants was significantly reduced or lost by mutation of HSFA2, a known key regulator of heat acclimation, thus indicating that HSFA2 is a target gene of AtXRN4-mediated mRNA degradation both under non-stress conditions and during heat acclimation. These results demonstrate that AtXRN4-mediated mRNA degradation is linked to the suppression of heat acclimation.
In plants, miRNAs and siRNAs, such as transacting siRNAs (ta-siRNAs), affect their targets through distinct regulatory mechanisms. In this study, the expression profiles of small RNAs (smRNAs) in Arabidopsis plants subjected to drought, cold, and high-salinity stress were analyzed using 454 DNA sequencing technology. Expression of three groups of ta-siRNAs (TAS1, TAS2, and TAS3) and their precursors was downregulated in Arabidopsis plants subjected to drought and high-salinity stress. Analysis of ta-siRNA synthesis mutants and mutated ARF3-overexpressing plants that escape the tasiRNA-ARF target indicated that self-pollination was hampered by short stamens in plants under drought and high-salinity stress. Microarray analysis of flower buds of rdr6 and wild-type plants under drought stress and nonstressed conditions revealed that expression of floral development- and auxin response-related genes was affected by drought stress and by the RDR6 mutation. The overall results of the present study indicated that tasiRNA-ARF is involved in maintaining the normal morphogenesis of flowers in plants under stress conditions through fine-tuning expression changes of floral development-related and auxin response-related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.