Endogenous endocannabinoids bind to cannabinoid receptors; namely CB1, CB2, TRPV1 and GPR55, to activate intracellular pathways that control many cellular functions. Elevated levels of endocannabinoids have been identified in diseases such as obesity and diabetes, with the onset of diabetic nephropathy associated with proximal tubule hypertrophy. Recent research has identified a role for CB1 in apoptosis in human proximal tubular (HK2) cells, however the role of the other receptors has not been investigated. We investigated if the cannabinoid receptors played a role in hypertrophy in HK2 cells. Characterisation of HK2 cells demonstrated that mRNA and protein for CB1, CB2, TRPV1 and GPR55 occurs in these cells. Importantly, activation of the cannabinoid receptors with anandamide significantly increases hypertrophy in HK2 cells. In general, treatment with CB1 antagonist AM-251, reduces hypertrophy while treatment with CB2 (AM-630) and TRPV1 (SB-366791) antagonists increases hypertrophy. Targeting a cannabinoid receptor sensitive to O-1918 in HK2 cells did not alter proximal tubule cell hypertrophy. Therefore it is likely that in human proximal tubule, these receptors regulate cellular function by activating different cell signalling pathways. Nonetheless, we have identified a role for cannabinoid receptors in proximal tubule cells which may provide novel therapeutic targets for the treatment of diabetes and obesity.
BACKGROUND AND PURPOSEIn diabetic nephropathy agonism of CB2 receptors reduces albuminuria and podocyte loss; however, the role of CB 2 receptors in obesity-related nephropathy is unknown. The aim of this study was to determine the role of CB 2 receptors in a model of diet-induced obesity (DIO) and characterize the hallmark signs of renal damage in response to agonism (AM1241) and antagonism (AM630) of CB2 receptors. EXPERIMENTAL APPROACHMale Sprague Dawley rats were fed a high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks. In another cohort, after 9 weeks on a HFD, rats were injected daily with either 3 mg·kg − 1 AM1241, 0.3 mg·kg −1 AM630 or saline for 6 weeks. KEY RESULTSTen weeks on a HFD significantly reduced renal expression of CB2 receptors and renal function. Treatment with AM1241 or AM630 did not reduce weight gain or food consumption in DIO. Despite this, AM1241 significantly reduced systolic BP, peri-renal adipose accumulation, plasma leptin, urinary protein, urinary albumin, urinary sodium excretion and the fibrotic markers TGF-β1, collagen IV and VEGF in kidney lysate. Treatment with AM630 of DIO rats significantly reduced creatinine clearance and increased glomerular area and kidney weight (gross and standardized for body weight). Diastolic BP, glucose tolerance, insulin sensitivity, plasma creatinine, plasma TGF-β1 and kidney expression of fibronectin and α-smooth muscle actin were not altered by either AM1241 or AM630 in DIO. CONCLUSIONSThis study demonstrates that while agonism of CB2 receptors with AM1241 treatment for 6 weeks does not reduce weight gain in obese rats, it leads to improvements in obesity-related renal dysfunction. AbbreviationsCB1 receptor, cannabinoid receptor 1; CB2 receptor, cannabinoid receptor 2; CKD, chronic kidney disease; DIO, diet-induced obesity; eGFR, estimated glomerular filtration rate; HFD, high-fat diet; PAS, periodic acid-Schiff
Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established; however, the direct effects of cannabinoid receptor 1 (CB 1 ) antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB 1 antagonist AM251 in a model of DIO. Male Sprague-Dawley rats were fed a low-or high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks to elicit DIO (nZ9). In a different cohort, rats were fed a HFD for 15 weeks. After 9 weeks consuming a HFD, rats were injected daily for 6 weeks with 3 mg/kg AM251 (nZ9) or saline via i.p. injection (nZ9). After 10 weeks consuming a HFD, CB 1 and megalin protein expression were significantly increased in the kidneys of obese rats. Antagonism of CB 1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats. Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinaemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGFA, TGFB1 and collagen IV in the kidney. This study demonstrates that treatment with CB 1 antagonist AM251 improves renal outcomes in obese rats.
Intestinal epithelial cells form a barrier that is critical in protecting the host from the hostile luminal environment. Previously, we showed that lysophosphatidic acid (LPA) receptor 1 regulates proliferation of intestinal epithelial cells, such that the absence of LPA1 mitigates the epithelial wound healing process. This study provides evidence that LPA1 is important for the maintenance of epithelial barrier integrity. The epithelial permeability, determined by fluorescently labeled dextran flux and transepithelial resistance, is increased in the intestine of mice with global deletion of Lpar1, Lpar1 (Lpa1). Serum liposaccharide level and bacteria loads in the intestinal mucosa and peripheral organs were elevated in Lpa1 mice. Decreased claudin-4, caudin-7, and E-cadherin expression in Lpa1 mice further suggested defective apical junction integrity in these mice. Regulation of LPA1 expression in Caco-2 cells modulated epithelial permeability and the expression levels of junctional proteins. The increased epithelial permeability in Lpa1 mice correlated with increased susceptibility to an experimental model of colitis. This resulted in more severe inflammation and increased mortality compared with control mice. Treatment of Caco-2 cells with tumor necrosis factor-α and interferon-γ significantly increased paracellular permeability, which was blocked by cotreatment with LPA, but not LPA1 knockdown cells. Similarly, orally given LPA blocked tumor necrosis factor-mediated intestinal barrier defect in mice. LPA1 plays a significant role in maintenance of epithelial barrier in the intestine via regulation of apical junction integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.