The gene SMART (genes and the Skeletal Muscle Adaptive Response to Training) Study aims to identify genetic variants that predict the response to both a single session of High-Intensity Interval Exercise (HIIE) and to four weeks of High-Intensity Interval Training (HIIT). While the training and testing centre is located at Victoria University, Melbourne, three other centres have been launched at Bond University, Queensland University of Technology, Australia, and the University of Brighton, UK. Currently 39 participants have already completed the study and the overall aim is to recruit 200 moderately-trained, healthy Caucasians participants (all males 18–45 y, BMI < 30). Participants will undergo exercise testing and exercise training by an identical exercise program. Dietary habits will be assessed by questionnaire and dietitian consultation. Activity history is assessed by questionnaire and current activity level is assessed by an activity monitor. Skeletal muscle biopsies and blood samples will be collected before, immediately after and 3 h post HIIE, with the fourth resting biopsy and blood sample taken after four weeks of supervised HIIT (3 training sessions per week). Each session consists of eight to fourteen 2-min intervals performed at the pre-training lactate threshold (LT) power plus 40 to 70% of the difference between pre-training lactate threshold (LT) and peak aerobic power (Wpeak). A number of muscle and blood analyses will be performed, including (but not limited to) genotyping, mitochondrial respiration, transcriptomics, protein expression analyses, and enzyme activity. The participants serve as their own controls. Even though the gene SMART study is tightly controlled, our preliminary findings still indicate considerable individual variability in both performance (in-vivo) and muscle (in-situ) adaptations to similar training. More participants are required to allow us to better investigate potential underlying genetic and molecular mechanisms responsible for this individual variability.
BACKGROUND AND PURPOSEIn diabetic nephropathy agonism of CB2 receptors reduces albuminuria and podocyte loss; however, the role of CB 2 receptors in obesity-related nephropathy is unknown. The aim of this study was to determine the role of CB 2 receptors in a model of diet-induced obesity (DIO) and characterize the hallmark signs of renal damage in response to agonism (AM1241) and antagonism (AM630) of CB2 receptors. EXPERIMENTAL APPROACHMale Sprague Dawley rats were fed a high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks. In another cohort, after 9 weeks on a HFD, rats were injected daily with either 3 mg·kg − 1 AM1241, 0.3 mg·kg −1 AM630 or saline for 6 weeks. KEY RESULTSTen weeks on a HFD significantly reduced renal expression of CB2 receptors and renal function. Treatment with AM1241 or AM630 did not reduce weight gain or food consumption in DIO. Despite this, AM1241 significantly reduced systolic BP, peri-renal adipose accumulation, plasma leptin, urinary protein, urinary albumin, urinary sodium excretion and the fibrotic markers TGF-β1, collagen IV and VEGF in kidney lysate. Treatment with AM630 of DIO rats significantly reduced creatinine clearance and increased glomerular area and kidney weight (gross and standardized for body weight). Diastolic BP, glucose tolerance, insulin sensitivity, plasma creatinine, plasma TGF-β1 and kidney expression of fibronectin and α-smooth muscle actin were not altered by either AM1241 or AM630 in DIO. CONCLUSIONSThis study demonstrates that while agonism of CB2 receptors with AM1241 treatment for 6 weeks does not reduce weight gain in obese rats, it leads to improvements in obesity-related renal dysfunction. AbbreviationsCB1 receptor, cannabinoid receptor 1; CB2 receptor, cannabinoid receptor 2; CKD, chronic kidney disease; DIO, diet-induced obesity; eGFR, estimated glomerular filtration rate; HFD, high-fat diet; PAS, periodic acid-Schiff
Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established; however, the direct effects of cannabinoid receptor 1 (CB 1 ) antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB 1 antagonist AM251 in a model of DIO. Male Sprague-Dawley rats were fed a low-or high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks to elicit DIO (nZ9). In a different cohort, rats were fed a HFD for 15 weeks. After 9 weeks consuming a HFD, rats were injected daily for 6 weeks with 3 mg/kg AM251 (nZ9) or saline via i.p. injection (nZ9). After 10 weeks consuming a HFD, CB 1 and megalin protein expression were significantly increased in the kidneys of obese rats. Antagonism of CB 1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats. Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinaemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGFA, TGFB1 and collagen IV in the kidney. This study demonstrates that treatment with CB 1 antagonist AM251 improves renal outcomes in obese rats.
ADT reduces basal and protein feeding-induced rises in MPS; however, combined protein ingestion with resistance exercise stimulated MPS to a similar degree as CON. Testosterone appears to play a role in maintaining muscle mass but is not necessary to initiate a robust response in MPS following resistance exercise when combined with protein ingestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.