Objectives The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. Materials and Methods We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl/fl;K14Cre). Results Ift88fl/fl;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis‐related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. Conclusion Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.
Background Craniofacial disharmony in cases of jaw deformity associated with abnormal lateral deviation of the jaw mostly involves both the maxilla and mandible. However, it has been still difficult to capture the jaw deviation aspect in a 3-dimensional and quantitative techniques. In this study, we focused on 3-dimensional mandibular morphology and position of the condylar head in relation to the base of the skull in patients with mandibular prognathism, one of the most common jaw deformities. We used cluster analysis to quantify and classify deviation and clarified its characteristics. We also investigated the degree of correlation between those findings and menton (Me) deviation measured on frontal cephalograms, which is a conventional indicator of jaw deformity. Results Findings obtained from 100 patients (35 men, 65 women) were classified into the following three groups based on mandibular morphology and condylar position relative to the skull base. Then, reclassification using these parameters enabled classification of cluster analysis findings into seven groups based on abnormal jaw deviation characteristics. Comparison among these seven groups showed that the classification criteria were ramus height, mandibular body length, distance from the gonion to the apex of the coronoid process, and the lateral and vertical positions of the mandible. Weak correlation was also found between Me deviation on frontal cephalograms and each of the above parameters measured on 3D images. Conclusions Focusing on mandibular morphology and condylar position relative to the skull base in patients with mandibular prognathism, we used cluster analysis to quantify and classify jaw deviation. The present results showed that the 3D characteristics of the mandible based on mandibular morphology and condylar position relative to the skull base can be classified into seven groups. Further, we clarified that Me deviation on frontal cephalograms, which has been used to date, is inadequate for capturing jaw deviation characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.