A major goal in cancer research is to develop carriers that can deliver drugs effectively and without side effects. Liposomal and particulate carriers with diameters of ∼100 nm have been widely used to improve the distribution and tumour accumulation of cancer drugs, but so far they have only been effective for treating highly permeable tumours. Here, we compare the accumulation and effectiveness of different sizes of long-circulating, drug-loaded polymeric micelles (with diameters of 30, 50, 70 and 100 nm) in both highly and poorly permeable tumours. All the polymer micelles penetrated highly permeable tumours in mice, but only the 30 nm micelles could penetrate poorly permeable pancreatic tumours to achieve an antitumour effect. We also showed that the penetration and efficacy of the larger micelles could be enhanced by using a transforming growth factor-β inhibitor to increase the permeability of the tumours.
One of the restrictions in the potential use of gold markers for medical imaging/tracking of harder tumors is its size. We propose to use gold nanoparticles which, due to its small size, can be administered conveniently via intravenous injection. One of the factors that determine the clinical utility of nanoparticles is the ability to enter cells. In this report, the stability of gold nanoparticles mixed with different media was determined by UV-vis spectroscopy. Gold nanoparticle size was confirmed by TEM. Intracellular uptake using different gold nanoparticle sizes, incubation times and concentrations were analyzed using Atomic Absorption Spectrometry (AAS). Temperature dependence uptake was also measured using AAS. The results showed that pancreas cancer cells uptake 20 nm gold nanoparticles preferentially compared to other gold nanoparticle sizes. Efficient accumulation of gold nanoparticles into pancreas cancer cells can be achieved at longer incubation time and higher concentration. The findings of this study will help in the design and optimization of the gold nanoparticle-based agents for therapeutic and diagnostic applications of X-ray Drug Delivery System.
We evaluated a new line probe assay (LiPA) kit to identify Mycobacterium species and to detect mutations related to drug resistance in Mycobacterium tuberculosis. A total of 554 clinical isolates of Mycobacterium tuberculosis (n ؍ 316), Mycobacterium avium (n ؍ 71), Mycobacterium intracellulare (n ؍ 51), Mycobacterium kansasii (n ؍ 54), and other Mycobacterium species (n ؍ 62) were tested with the LiPA kit in six hospitals. The LiPA kit was also used to directly test 163 sputum specimens. The results of LiPA identification of Mycobacterium species in clinical isolates were almost identical to those of conventional methods. Compared with standard drug susceptibility testing results for the clinical isolates, LiPA showed a sensitivity and specificity of 98.9% and 97.3%, respectively, for detecting rifampin (RIF)-resistant clinical isolates; 90.6% and 100%, respectively, for isoniazid (INH) resistance; 89.7% and 96.0%, respectively, for pyrazinamide (PZA) resistance; and 93.0% and 100%, respectively, for levofloxacin (LVX) resistance. The LiPA kit could detect target species directly in sputum specimens, with a sensitivity of 85.6%. Its sensitivity and specificity for detecting RIF-, PZA-, and LVX-resistant isolates in the sputum specimens were both 100%, and those for detecting INH-resistant isolates were 75.0% and 92.9%, respectively. The kit was able to identify mycobacterial bacilli at the species level, as well as drug-resistant phenotypes, with a high sensitivity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.