We propose a semi-active control of civil structures based on a one-step-ahead prediction of the seismic response. The vibration control device (VCD), which has been developed by authors, generates two types of resistance forces, i.e., a damping force proportional to the relative velocity and an inertial force proportional to the relative acceleration between two stories. The damping coefficient of the VCD can be changed with a command signal to an electric circuit connected to the VCD. In the present paper the command signal for changing the damping coefficient of each VCD is assumed to take two values, i.e., the command to take the maximum or minimum damping coefficient. The optimal command signal is selected from all candidates of command signals so that the Euclidean norm of the one-step-ahead predicted seismic response, calculated by a numerical integration, is minimized. As an example a semi-active control of a fifteen-story building with three VCDs is considered. The simulation results show that the proposed semi-active control achieves superior performance on vibration suppression compared with a passive control case where the damping coefficient of each VCD is fixed at its maximum value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.