Sperm from four different gene-disrupted mouse lines (calmegin [Clgn], Adam1a, Adam2, and Ace) are known to have defective zona-binding ability. Moreover, it is also reported that the sperm from all of these mouse lines exhibit another common phenotype of impaired migration into oviduct despite the large number of sperm found in uterus after coitus. On the other hand, the sperm from the Adam3-disrupted mouse line was reported to have defects in binding ability to zona, but were able to move into the oviduct. In order to clarify the difference, we investigated the migration of ADAM3-null sperm into oviduct precisely by visualizing the sperm by using acrosin-green fluorescent protein as a tag. As a result, in contrast to previous observations, it was demonstrated that the Adam3-disrupted sperm were unable to migrate into the oviduct after coitus. It was ultimately shown that, in five out of five different gene-disrupted mouse lines, the phenotype of impaired sperm binding to zona pellucida was accompanied by the loss of ability of sperm to migrate into the oviduct. This indicates a close relationship between the two phenomena, and also that sperm migration into the oviduct is a crucial step for fertilization.
Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra-or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCEBecause of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and efflux, the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for industrial purposes. We propose that this novel mechanism for sensing and regulating cysteine levels is a safety valve enabling adaptation to sudden changes in intra-or extracellular cysteine levels in bacteria. Our findings provide important insights into optimizing the production of cysteine and related biomaterials by P. ananatis and also a deep understanding of sulfur/cysteine metabolism and regulation in this plant pathogen and related bacteria.
Cysteine is a commercially important amino acid; however, it lacks an efficient fermentative production method. Due to its cytotoxicity, intracellular cysteine levels are stringently controlled via several regulatory modes. Managing its toxic effects as well as understanding and deregulating the complexities of regulation are crucial for establishing the fermentative production of cysteine. The regulatory modes include feedback inhibition of key metabolic enzymes, degradation, efflux pumps, and the transcriptional regulation of biosynthetic genes by a master cysteine regulator, CysB. These processes have been extensively studied using Escherichia coli for overproducing cysteine by fermentation. In this study, we genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to identify key factors required for cysteine production. According to this and our previous studies, we identified a major cysteine desulfhydrase gene, ccdA (formerly PAJ_0331), involved in cysteine degradation, and the cysteine efflux pump genes cefA and cefB (formerly PAJ_3026 and PAJ_p0018, respectively), which may be responsible for downregulating the intracellular cysteine level. Our findings revealed that ccdA deletion and cefA and cefB overexpression are crucial factors for establishing fermentative cysteine production in P. ananatis and for obtaining a higher cysteine yield when combined with genes in the cysteine biosynthetic pathway. To our knowledge, this is the first demonstration of cysteine production in P. ananatis, which has fundamental implications for establishing overproduction in this microbe.IMPORTANCE The efficient production of cysteine is a major challenge in the amino acid fermentation industry. In this study, we identified cysteine efflux pumps and degradation pathways as essential elements and genetically engineered Pantoea ananatis, an emerging host for the fermentative production of bio-based materials, to establish the fermentative production of cysteine. This study provides crucial insights into the design and construction of cysteine-producing strains, which may play central roles in realizing commercial basis production.
Calnexin (CANX) and calreticulin (CALR) chaperones mediate nascent glycoprotein folding in the endoplasmic reticulum. Here we report that these chaperones have distinct roles in male and female fertility. Canx null mice are growth retarded but fertile. Calr null mice die during embryonic development, rendering indeterminate any effect on reproduction. Therefore, we conditionally ablated Calr in male and female germ cells using Stra8 (mcKO) and Zp3 (fcKO) promoter-driven Cre recombinase, respectively. Calr mcKO male mice were fertile, but fcKO female mice were sterile despite normal mating behavior. Strikingly, we found that Calr fcKO female mice had impaired folliculogenesis and decreased ovulatory rates due to defective proliferation of cuboidal granulosa cells. Oocyte-derived, TGF-beta family proteins play a major role in follicular development and molecular analysis revealed that the normal processing of GDF9 and BMP15 was defective in Calr fcKO oocytes. These findings highlight the importance of CALR in female reproduction and demonstrate that compromised CALR function leads to ovarian insufficiency and female infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.