The accuracy of deep neural networks is degraded when the distribution of features in the test environment (target domain) differs from that of the training (source) environment. To mitigate the degradation, test-time adaptation (TTA), where a model adapts to the target domain without access to the source dataset, can be used in the test environment. However, the existing TTA methods lack feature distribution alignment between the source and target domains, which unsupervised domain adaptation mainly addresses, because accessing the source dataset is prohibited in the TTA setting. In this paper, we propose a novel TTA method, named Covariance-Aware Feature alignment (CAFe), which explicitly aligns the source and target feature distributions at test time. To perform alignment without accessing the source data, CAFe uses auxiliary feature statistics (mean and covariance) pre-computed on the source domain, which are lightweight and easily prepared. Further, to improve efficiency and stability, we propose feature grouping, which splits the feature dimensions into groups according to their correlations by using spectral clustering to avoid degeneration of the covariance matrix. We empirically show that CAFe outperforms prior TTA methods on a variety of distribution shifts.Preprint. Under review.
Existing image recognition techniques based on convolutional neural networks (CNNs) basically assume that the training and test datasets are sampled from i.i.d distributions. However, this assumption is easily broken in the real world because of the distribution shift that occurs when the cooccurrence relations between objects and backgrounds in input images change. Under this type of distribution shift, CNNs learn to focus on features that are not task-relevant, such as backgrounds from the training data, and degrade their accuracy on the test data. To tackle this problem, we propose relevant feature focusing (ReFF). ReFF detects task-relevant features and regularizes CNNs via explanation outputs (e.g., Grad-CAM). Since ReFF is composed of post-hoc explanation modules, it can be easily applied to off-the-shelf CNNs. Furthermore, ReFF requires no additional inference cost at test time because it is only used for regularization while training. We demonstrate that CNNs trained with ReFF focus on features relevant to the target task and that ReFF improves the test-time accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.