In recent years, small fishes such as zebrafish and medaka have been widely recognized as model animals. They have high homology in genetics and tissue structure with humans and unique features that mammalian model animals do not have, such as transparency of embryos and larvae, a small body size and ease of experiments, including genetic manipulation. Zebrafish and medaka have been used extensively in the field of neurology, especially to unveil the mechanisms of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, and recently, these fishes have also been utilized to understand neurodevelopmental disorders such as autism spectrum disorder. The turquoise killifish has emerged as a new and unique model animal, especially for ageing research due to its unique life cycle, and this fish also seems to be useful for age-related neurological diseases. These small fishes are excellent animal models for the analysis of human neurological disorders and are expected to play increasing roles in this field. Here, we introduce various applications of these model fishes to improve our understanding of human neurological disorders.
ObjectivesParkinson's disease is a neurodegenerative disorder that causes motor and nonmotor symptoms due to the loss of dopaminergic nerves and is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein. Glucosylceramidase beta (GBA), which is a causative gene of autosomal recessive Gaucher disease, is also known to be a risk gene for Parkinson's disease. In this study, we tried to detect synergistic effects of α-synuclein accumulation and gba depletion on dopaminergic neurodegeneration in zebrafish.
MethodsWe generated a transgenic line of zebrafish overexpressing the A53T α-synuclein and gba mutant fish, and analyzed pathologies of α-synuclein aggregation and neurodegeneration.Results Zebrafish overexpressing the A53T α-synuclein did not exhibit α-synuclein aggregate formation. After the loss of gba function in this mutant α-synuclein transgenic line, we observed the marked presence of α-synuclein aggregates. Loss of gba function in zebrafish resulted in dopaminergic and noradrenergic neurodegeneration but this level of neurodegeneration was not exacerbated by overexpression of mutant α-synuclein.
ConclusionsThese results indicate that loss of gba function was sufficient to generate a neurodegenerative phenotype in zebrafish regardless of the expression of α-synuclein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.