Matrix metalloproteinases (MMP) play a role in a wide range of tumorigenesis, including early carcinogenesis events, tumor growth and tumor invasion and metastasis. Given that the ability of tumor cells to infiltrate and disseminate widely is what makes the tumors malignant, a role of MMP in cell migration during this invasive and metastatic process is important. There are two types of cancer cell migration: single cell locomotion and cohort migration (cell movement en mass keeping cell-cell contact, which is frequently seen in better differentiated carcinomas). Cell surface localization and activation of MMP is essential for cells to migrate, through rearrangement of extracellular matrix (ECM) to suit cell migration. Certain MMP, such as gelatinases and membrane -type 1 MMP, have special mechanisms to localize at leading edges in both types of cell migration. Moreover, in cohort migration, expression of these MMP is regulated via cell-cell contact within migrating cell sheets and confined to the foremost pathfinder cells of the migrating cell sheets. New roles of cell surface MMP, such as cleavage of cell surface receptors or cofactors involved in cell-ECM interactions during cell migration, are also discussed.
Emmprin (basigin, CD147) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily. It is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases. Moreover, it has recently been shown that emmprin also stimulates expression of vascular endothelial growth factor and hyaluronan, which leads to angiogenesis and anchorage-independent growth/multidrug resistance, respectively. These findings have made emmprin an important molecule in tumor progression and, thus, more attractive as a target for antitumor treatment. However, other functions of emmprin, including as an activator of T cells, a chaperone for monocarboxylate transporters, a receptor for cyclophilin A and a neural recognition molecule, are also being identified in physiological and pathological conditions. Therefore, it is essential to develop specific means to control particular functions of emmprin, for which elucidation of each mechanism is crucial. This review will discuss the role of emmprin in tumor progression and recent advances in the molecular mechanisms of diverse phenomena regulated by emmprin.
SUMMARYWe used a specific monoclonal antibody to human hepatocyte growth factor activator inhibitor type 1 (HAI-1) in immunohistochemical procedures to determine the distribution and localization of HAI-1 in human tissues. In normal adult tissues, HAI-1 was predominantly expressed in the simple columnar epithelium of the ducts, tubules, and mucosal surface of various organs. In all cases, HAI-1 was localized predominantly on the cellular lateral (or basolateral) surface. By contrast, hepatocytes, acinar cells, endocrine cells, stromal mesenchymal cells, and inflammatory cells were hardly stainable with the antibody, and stratified squamous epithelium showed only faint immunoreactivity on the surface of cells of the basal layer. In the gastrointestinal tract, the surface epithelium was strongly stained. RNA blot analysis confirmed the presence of specific mRNA transcript in the gastrointestinal mucosa, and in situ hybridization revealed that HAI-1 mRNA showed a similar cellular distribution pattern. Although HAI-1 was not expressed in normal hepatocytes, strong immunoreactivity was observed on the epithelium of pseudo-bile ducts and on the surface of scattered hepatocytes in fulminant hepatitis. The enhanced expression was also noted in regenerating tubule epithelial cells of the kidney after infarction. We conclude that HAI-1 is preferentially expressed in the simple columnar epithelium of the mucosal surface and duct, that the predominant localization of HAI-1 is the cell surface, and that the expression of HAI-1 can be modulated by tissue injury and regeneration.
IHC differentiated MPM from RMC with 100% specificity for both and sensitivities of 42.2% and 60.0%, respectively. The combination of MTAP and BAP1 IHC yielded a sensitivity of 77.8%, which was higher than that of BAP1 IHC alone or 9p21 FISH alone (62.2%). Moreover, a high degree of concordance was observed between the results of MTAP IHC and 9p21 FISH in cell blocks. CONCLUSIONS: A combination of MTAP and BAP1 IHC in cell blocks from pleural effusions appears to be a reliable and useful method for differentiating MPM cells from RMC and can be used in the routine diagnosis of MPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.