Background
To understand the roles of serum exosomes in rheumatoid arthritis (RA), we comprehensively investigated the protein profiles of serum exosomes in patients with RA.
Methods
Exosomes were isolated from serum samples obtained from 33 patients (12 with active RA [aRA], 11 with inactive RA [iRA], 10 with osteoarthritis [OA]) and 10 healthy donors (HLs). Proteins extracted from the exosomes were separated by two-dimensional differential gel electrophoresis (2D-DIGE) and identified by mass spectrometry.
Results
In total, 204 protein spots were detected by 2D-DIGE. In the aRA, iRA, and OA groups, 24, 5, and 7 spots showed approximately ≥ ±1.3-fold intensity differences compared with the HL group, respectively. We were able to identify proteins in six protein spots. Among them, the protein spot identified as Toll-like receptor 3 (TLR3) showed approximately 6-fold higher intensity in the aRA group than in the other groups.
Conclusions
Patients with active RA possessed considerably different protein profiles of serum exosomes from patients with iRA, patients with OA, and healthy donors. The unique protein profile of serum exosomes, such as the possession of abundant TLR3 fragments, may reflect the pathophysiology of active RA.
Electronic supplementary material
The online version of this article (10.1186/s41927-018-0041-8) contains supplementary material, which is available to authorized users.
Dexamethasone (Dex) stimulates the differentiation of mesenchymal progenitor cells into adipocytes and osteoblasts. However, the mechanisms underlying Dex-induced differentiation have not been clearly elucidated. We examined the effect of Dex on the expression and activity of Wnt/β-catenin signal-related molecules in a clonal mesenchymal progenitor cell line, ROB-C26 (C26). Dex induced the mRNA expression of Wnt antagonists, dickkopf-1 (Dkk-1), and Wnt inhibitory factor (WIF)-1. Immunocytochemical analysis showed that the downregulation of β-catenin protein expression by Dex occured concomitantly with the increased expression of the PPARγ protein. Dex decreased phosphorylation of Ser9-GSK3β and expression of active β-catenin protein. To examine the effects of Dex on Wnt/β-catenin activity, we used immunocytochemistry to analyze TCF/LEF-mediated transcription during Dex-induced adipogenesis in Wnt indicator (TOPEGFP) C26 cells. Our results demonstrated that Dex repressed TCF/LEF-mediated transcription, but induced adipocyte differentiation. Treatment with a GSK3β inhibitor attenuated Dex-induced inhibition of TCF/LEF-mediated transcriptional activity, but suppressed Dex-induced adipocyte differentiation, indicating that adipocyte differentiation and inhibition of Wnt/β-catenin activity by Dex are mediated by GSK3β activity. Furthermore, β-catenin knockdown not only suppressed Dex-induced ALP-positive osteoblasts differentiation but also promoted Dex-induced adipocytes differentiation. These results suggest that inhibition of β-catenin expression by Dex promotes the differentiation of mesenchymal progenitor cells into adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.