Although a wide variety of chiral organocatalysts have been developed for asymmetric transformations, effective chiral dialkyl sulfide organocatalysts remain relatively rare and under-developed, despite the potential utility of dialkyl sulfide catalysts. Herein, we report the development of chiral bifunctional dialkyl sulfide catalysts possessing a urea moiety for regio-, diastereo-, and enantioselective bromolactonization. The importance of the bifunctional design of chiral sulfide catalysts was clearly demonstrated in the present work. The roles of both the sulfide and urea moieties of the catalyst were clarified based on the results of experimental and theoretical investigation.
An efficient enantioselective synthesis of 3,3-disubstituted phthalides possessing a chiral quaternary carbon center was achieved via catalytic asymmetric bromolactonization using BINOL-derived bifunctional sulfide catalysts.
A chiral bifunctional sulfide catalyst bearing a urea moiety promotes the enantioselective bromoaminocyclization of 2-allylanilines to produce optically active 2-substituted indolines.
The alkyne aza-Prins cyclization of 3,5-diynyl amides and various aldehydes was developed as a first example of the aza-Prins cyclization with the introduction of TfO groups. This method could be applied to homopropargyl amides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.