Regulatory systems of reactive oxygen species (ROS) are known to be integrated with other pathways involving Ca2+ signaling, protein kinases, hormones and programmed cell death (PCD) pathways to regulate defense mechanisms in plants. Coordination between ROS regulatory systems and other pathways needs to be flexibly modulated to finely tune the mechanisms underlying responses of different types of tissues to heat stress, biotic stresses and their combinations during different growth stages. Especially, modulation of the delicate balance between ROS-scavenging and producing systems in reproductive tissues could be essential, because ROS-dependent PCD is required for the proper fertilization, despite the necessity of ROS scavenging to prevent the damage on cells under heat stress and biotic stresses. In this review, we will update the recent findings associated with coordination between multiple pathways under heat stress, pathogen attack and their combinations. In addition, possible integrations between different signals function in different tissues via ROS-dependent long-distance signals will be proposed.
Because of their sessile lifestyle, plants cannot escape from heat stress and are forced to alter their cellular state to prevent damage. Plants, therefore, evolved complex mechanisms to adapt to irregular increases in temperature in the natural environment. In addition to the ability to adapt to an abrupt increase in temperature, plants possess strategies to reprogram their cellular state during pre-exposure to sublethal heat stress so that they are able to survive under subsequent severe heat stress. Such an acclimatory response to heat, i.e., acquired thermotolerance, might depend on the maintenance of heat memory and propagation of long-distance signaling. In addition, plants are able to tailor their specific cellular state to adapt to heat stress combined with other abiotic stresses. Many studies revealed significant roles of reactive oxygen species (ROS) regulatory systems in the regulation of these various heat responses in plants. However, the mode of coordination between ROS regulatory systems and other pathways is still largely unknown. In this review, we address how ROS regulatory systems are integrated with other signaling networks to control various types of heat responses in plants. In addition, differences and similarities in heat response signals between different growth stages are also addressed.
Pollination is one of key determinants of yield production in important crops, such as grains and beans in which seeds are utilized as agricultural products. Thus, to fulfil food demand for growing world population, it is necessary to elucidate the mechanisms that regulate pollination, leading to increase in yield production. In this study, we compared detailed morphological characteristics of reproductive organs in Arabidopsis thaliana grown under control conditions or subjected to heat stress. Shorter length of anthers, filaments, and petals were observed in plants subjected to heat stress compared to those under control conditions. In contrast, heat stress resulted in enlargement of stigma via elongation of stigmatic papillae. Classification of stigmas based on patterns of pollen attachment indicated that pollen attachment to stigma clearly decreased under heat stress. In addition, artificial pollination experiment demonstrated that stigma shrank when pollen attached, but, continued to enlarge in the absence of pollen. Such modulation of stigma size depending on the presence or absence of pollen was observed both under control and heat stressed conditions. Taken together, these results suggest that elongation of stigmatic papillae is associated with failure of pollen attachment to the stigma, rather than heat stress. Furthermore, histochemical staining experiments suggest that Ca 2+ derived from pollen together with O 2 might be associated with morphological alteration of stigma depending on the patterns of pollen attachment.
An ability of plants memorizing past heat exposure to modulate the expression of stress response transcripts during recovery is essential for efficient acquired thermotolerance. In this study, we demonstrated that expression of heat response transcripts spiked at 30 min or 1 h, but dramatically declined at 3 h during recoveries following exposure to 5-min heat stress in Arabidopsis. In contrast, expression of transcripts up-regulated by 45-min heat stress was sustained for 30 min or 1 h then declined during recovery. These results suggest that heat memory can be differently modulated depending on the duration of heat exposure, and indicate that plants can memorize even 5-min heat stress to regulate acclimatory responses during recovery. Later hypothesis can be supported by the finding that accumulation of heat response proteins was also modulated during recovery following 5-min heat stress. In addition, 5-min heat stress followed by 3 h recovery was efficient to activate acquired thermotolerance of plants, although spike of transcript expression was observed at 1 h during recovery. These results suggest that plants possess the ability to quickly memorize heat stress and reset cellular states during recovery to adapt to subsequent severe heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.