causes swine erysipelas, an infection characterized by acute septicemia or chronic endocarditis and polyarthritis. Among 17 serovars, determined based on heat-stable peptidoglycan antigens, serovars 1 and 2 are most commonly associated with the disease; however, the molecular basis for the association between these serovars and virulence is unknown. To search for the genetic region defining serovar 1a (Fujisawa) strain antigenicity, we examined the 15-kb chromosomal region encompassing a putative pathway for polysaccharide biosynthesis, which was previously identified in the Fujisawa strain. Six transposon mutants of Fujisawa strain possessing a mutation in this region lost antigenic reactivity with serovar 1a-specific rabbit serum. Sequence analysis of this region in wild-type strains of serovars 1a, 1b, and 2 and serovar N, which lacks serovar-specific antigens, revealed that gene organization was similar among the strains and that serovar 2 strains showed variation. Serovar N strains displayed the same gene organization as the serovar 1a, 1b, or 2 strain and possessed certain mutations in this region. In two of the analyzed serovar N strains, restoration of the mutations via complementation with sequences derived from serovar 1a and 2 strains recovered antigenic reactivity with 1a- and 2-specific rabbit serum, respectively. Several gene mutations in this region resulted in altered capsule expression and attenuation of virulence in mice. These results indicate a functional connection between the biosynthetic pathways for the capsular polysaccharide and peptidoglycan antigens used for serotyping, which may explain variation in virulence among strains of different serovars.
Erysipelothrix rhusiopathiae causes swine erysipelas, an important infectious disease in the swine industry. In Japan, the incidence of acute swine erysipelas due to E. rhusiopathiae serovar 1a has recently increased markedly. To study the genetic relatedness of the strains from the recent cases, we analyzed 34 E. rhusiopathiae serovar 1a swine isolates collected between 1990 and 2011 and further investigated the possible association of the live Koganei 65-0.15 vaccine strain (serovar 1a) with the increase in cases. Pulsed-field gel electrophoresis analysis revealed no marked variation among the isolates; however, sequencing analysis of a hypervariable region in the surface-protective antigen A gene (spaA) revealed that the strains isolated after 2007 exhibited the same spaA genotype and could be differentiated from older strains. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms (SNPs) revealed that the Japanese strains examined were closely related, showing a relatively small number of SNPs among them. The strains were classified into four major lineages, with Koganei 65-0.15 (lineage III) being phylogenetically separated from the other three lineages. The strains isolated after 2007 and the two older strains constituted one major lineage (lineage IV) with a specific spaA genotype (M203/I257-SpaA), while the recent isolates were further divided into two geographic groups. The remaining older isolates belonged to either lineage I, with the I203/L257-SpaA type, or lineage II, with the I203/ I257-SpaA type. These results indicate that the recent increased incidence of acute swine erysipelas in Japan is associated with two sublineages of lineage IV, which have independently evolved in two different geographic regions.IMPORTANCE Using large-scale whole-genome sequence data from Erysipelothrix rhusiopathiae isolates from a wide range of hosts and geographic origins, a recent study clarified the existence of three distinct clades (clades 1, 2, and 3) that are found across multiple continents and host species, representing both livestock and wildlife, and an "intermediate" clade between clade 2 and the dominant clade 3 within the species. In this study, we found that the E. rhusiopathiae Japanese strains examined exhibited remarkably low levels of genetic diversity and confirmed that all of the Japanese and Chinese swine isolates examined in this study belong to clonal lineages within the intermediate clade. We report that spaA genotyping of E. rhusiopathiae strains is a practical alternative to whole-genome sequencing analysis of the E. rhusiopathiae isolates from eastern Asian countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.