Aim: The prediction of functional outcome is essential in the management of acute ischemic stroke patients. We aimed to explore the various prognostic factors with multivariate linear discriminant analysis or neural network analysis and evaluate the associations between candidate factors, baseline characteristics, and outcome. Methods: Acute ischemic stroke patients ( n =1,916) with premorbid modified Rankin Scale (mRS) scores of 0–2 were analyzed. The prediction models with multivariate linear discriminant analysis (quantification theory type II) and neural network analysis (log-linearized Gaussian mixture network) were used to predict poor functional outcome (mRS 3–6 at 3 months) with various prognostic factors added to age, sex, and initial neurological severity at admission. Results: Both models revealed that several nutritional statuses and serum alkaline phosphatase (ALP) levels at admission improved the predictive ability. Of the 1,484 patients without missing data, 560 patients (37.7%) had poor outcomes. The patients with poor outcomes had higher ALP levels than those without (294.3±259.5 vs. 246.3±92.5 U/l, P <0.001). Multivariable logistic analyses revealed that higher ALP levels (1-SD increase) were independently associated with poor stroke outcomes after adjusting for several confounding factors, including the neurological severity, malnutrition status, and inflammation (odds ratio 1.21, 95% confidence interval 1.02–1.49). Several nutritional indicators extracted from prediction models were also associated with poor outcome. Conclusion: Both the multivariate linear discriminant and neural network analyses identified the same indicators, such as nutritional status and serum ALP levels. These indicators were independently associated with functional stroke outcome.
Mood disorders (e.g. depression, apathy, and anxiety) are often observed in stroke patients, exhibiting a negative impact on functional recovery associated with various physical disorders and cognitive dysfunction. Consequently, post-stroke symptoms are complex and difficult to understand. In this study, we aimed to clarify the cross-sectional relationship between mood disorders and motor/cognitive functions in stroke patients. An artificial neural network architecture was devised to predict three types of mood disorders from 36 evaluation indices obtained from functional, physical, and cognitive tests on 274 patients. The relationship between mood disorders and motor/cognitive functions were comprehensively analysed by performing input dimensionality reduction for the neural network. The receiver operating characteristic curve from the prediction exhibited a moderate to high area under the curve above 0.85. Moreover, the input dimensionality reduction retrieved the evaluation indices that are more strongly related to mood disorders. The analysis results suggest a stress threshold hypothesis, in which stroke-induced lesions promote stress vulnerability and may trigger mood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.