The infusion of a small dose of glucose (1%) during minor otorhinolaryngeal, head and neck surgeries may suppress protein catabolism without hyperglycemia and hypoglycemia.
The present study showed that priming with rocuronium or vecuronium reduced the incidence of difficult ventilation by avoiding the muscle rigidity caused by remifentanil.
Background Breathing during a marathon is often empirically conducted in a so-called "2:2 breathing rhythm," which is based on a four-phase cycle, consisting of the 1st and 2nd inspiratory and the 1st and 2nd expiratory phases. We developed a prototype ventilator that can perform intermittent positive pressure ventilation, mimicking the breathing cycle of the 2:2 breathing rhythm. This mode of ventilation was named the marathoners' breathing rhythm ventilation (MBV). We hypothesized that MBV may have a lung protective effect. Methods We examined the effects of the MBV on the pulmonary pre-edema model in isolated perfused rabbit lungs. The pulmonary pre-edema state was induced using bloodless perfusate with low colloid osmotic pressure. The 14 isolated rabbit lung preparations were randomly divided into the conventional mechanical ventilation (CMV) group and MBV group, (both had an inspiratory/expiratory ratio of 1/1). In the CMV group, seven rabbit lungs were ventilated using the Harvard Ventilator 683 with a tidal volume (TV) of 8 mL/kg, a respiratory rate (RR) of 30 cycles/min, and a positive end-expiratory pressure (PEEP) of 2 cmH 2 O for 60 min. In the MBV group, seven rabbit lungs were ventilated using the prototype ventilator with a TV of 6 mL/kg, an RR of 30 cycles/min, and a PEEP of 4 cmH 2 O (first step) and 2 cmH 2 O (second step) for 60 min. The time allocation of the MBV for one cycle was 0.3 s for each of the 1st and 2nd inspiratory and expiratory phases with 0.2 s of intermittent resting between each phase. Results Peak airway pressure and lung wet-to-dry ratio after 60 min of ventilation were lower in the MBV group than in the CMV group. Conclusion MBV was considered to have a lungprotective effect compared to CMV.
BackgroundIsoflurane and sevoflurane protect lungs with ischemia–reperfusion (IR) injury. We examined the influence of desflurane on IR lung injury using isolated rabbit lungs perfused with a physiological salt solution.MethodsThe isolated lungs were divided into three groups: IR, desflurane-treated ischemia–reperfusion (DES-IR), and ventilation/perfusion-continued control (Cont) groups (n = 6 per group). In the DES-IR group, inhalation of desflurane at 1 minimum alveolar concentration (MAC) was conducted in a stable 30-min phase. In the IR and DES-IR groups, ventilation/perfusion was stopped for 75 min after the stable phase. Subsequently, they were resumed. Each lung was placed on a balance, and weighed. Weight changes were measured serially throughout this experiment. The coefficient of filtration (Kfc) was determined immediately before ischemia and 60 min after reperfusion. Furthermore, bronchoalveolar lavage fluid (BALF) was collected from the right bronchus at the completion of the experiment. After the completion of the experiment, the left lung was dried, and the lung wet-to-dry weight ratio (W/D) was calculated.ResultsThe Kfc values at 60 min after perfusion were 0.40 ± 0.13 ml/min/mmHg/100 g in the DES-IR group, 0.26 ± 0.07 ml/min/mmHg/100 g in the IR group, and 0.22 ± 0.08 (mean ± SD) ml/mmHg/100 g in the Cont group. In the DES-IR group, the Kfc at 60 min after the start of reperfusion was significantly higher than in the other groups. In the DES-IR group, W/D was significantly higher than in the Cont group. In the DES-IR group, the BALF concentrations of nitric oxide metabolites were significantly higher than in the other groups. In the DES-IR group, the total amount of vascular endothelial growth factor in BALF was significantly higher than in the Cont group.ConclusionsThe pre-inhalation of desflurane at 1 MAC exacerbates pulmonary IR injury in isolated/perfused rabbit lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.