Recessive mutations at the suppressor of sable [su(s)] locus in Drosophila melanogaster result in suppression of second site mutations caused by insertions of the mobile element 412. In order to determine whether su(s) mutations might have other phenotypes, a saturation mapping of the su(s) region was carried out. The screen yielded 76 mutations that comprise ten genetic complementation groups ordered distal to proximal as follows: l(1)1Bh, l(1)1Bi, M(1)1B, su(s), l(1)1Bk, l(1)1Ca, mul, tw, l(1)lDa and brc. Twenty-three of the mutations are su(s) alleles, and all are suppressors of the 412-insertion-caused v1 allele. Although the screen could have detected su(s) mutations causing sex-specific dominant lethality or sterility as well as all types of recessive lethality or sterility, the only other phenotype observed was male sterility that is enhanced by cold temperature. This type of sterility is exhibited only by alleles induced by base-substitution-causing mutagens. Genetic functions of the poly(A+) messages transcribed from the su(s) microregion were identified by the reintroduction of cloned sequences into embryos by P element transformation. su(s) function has been attributed to a 5-kb message. The segment of DNA encoding only this 5-kb message rescues both the suppression and cold-sensitive male sterility phenotypes of su(s). Minute (1) 1B has been provisionally identified as encoding a 3.5-kb message; lethal (1)1Bi encodes a 1-kb message; and lethal (1)1Bk encodes a 4-kb message. The possible functions of su(s) and M(1)1B are discussed.
An examination of Drosophila melanogaster from natural populations revealed genetic variation for dipeptidase-A (DIP-A) and dipeptidase-B (DIP-B) activities within sets of lines that differed from one another only in
The peptidase system in Drosophila melanogaster, consisting of dipeptidase-A, dipeptidase-B, dipeptidase-C and the leucine aminopeptidases, was used as a model to study the adaptive significance of enzyme activity variation. The involvement of the peptidases in osmoregulation has been suggested from the ubiquitous distribution of peptidase activities in nearly all tissues and the high concentration of amino acids and oligopeptides in the hemolymph. Under this hypothesis, larvae counteract increases in environmental osmotic stress by hydrolyzing peptides into amino acids both intra- and extracellularly to increase physiological osmotic concentration. The expression of the peptidases was studied by assaying for peptidase activities in third instar larvae of isogenic lines, which were reared under increasing levels of environmental osmotic stress using either D-mannitol or NaCl. Second and third chromosome substitution isogenic lines were used to assess the relative contribution of regulatory and structural genes in enzyme activity variation. Results indicate that: (1) genetic variation exists for peptidase activities, (2) the effect of osmotic stress is highly variable among peptidases, (3) changes in peptidase activities in response to osmotic stress depend on both genetic background and osmotic effector and (4) peptidase activities are correlated with each other, but these phenotypic correlations depend on genetic background, osmotic effector, and level of osmotic stress. Osmotic concentration in the larval hemolymph is correlated with leucine aminopeptidase activity, but changes in hemolymph osmotic concentration in response to environmental osmotic stress depend on the osmotic effector in the environment. Although these findings suggest that genetic and environmental factors contribute significantly toward the expression of enzymes with similar functions, a relative larval viability study of genotypes that differed significantly in dipeptidase-B (DIP-B) activity revealed that low DIP-B activity did not confer any measurable reduction in larval viability under increasing levels of environmental osmotic stress. These negative results suggest that, either DIP-B does not play a major role in osmoregulation or differential osmoregulation is not related to egg to adult viability in these tests.
An examination of Drosophila melanogaster from natural populations revealed genetic variation for dipeptidase-A (DIP-A) and dipeptidase-B (DIP-B) activities within sets of lines that differed from one another only in the second or the third chromosome. Analyses of diallel crosses indicate that both activities are inherited additively, and coordinate control of expression is suggested by the significant positive correlation between the two activities. Electrophoresis and thermal denaturation studies failed to detect structural differences among lines with different levels of DIP-A activity. No characteristic level of activity could be associated with any DIP-A allozyme. Mapping experiments revealed the presence of activity modifiers that are in tight linkage with the structural gene, as well as those that manifest their effects from a distance. The maximum genetic distance between a high-activity effect on DIP-A and the structural gene was determined to be 0.029 map unit. These results are in accordance with the prevalence of activity modifiers for various enzymes in Drosophila melanogaster.
The enzyme dipeptidase-A (DIP-A) in Drosophila melanogaster is coded by a second chromosome locus that is polymorphic for three allozymes in natural populations. DIP-A appears to be the only enzyme in D. melanogaster capable of hydrolyzing the dipeptide glycyl-l-isoleucine, since flies homozygous for null alleles at this locus have no detectable glycyl- l-isoleucine-ase activity. DIP-A activity occurs in many tissues and throughout development, but is particularly high in the larval midgut, suggesting an important role in protein digestion. These observations suggested an experimental design for investigating the adaptive significance of genetic variation in DIP-A activity. Fitness components of DIP-A variants could be estimated and compared under two environmental conditions (defined diets under axenic conditions). In the restrictive environment, the essential amino acid l-isoleucine is provided only in the form of glycyl-l-isoleucine, whereas in the permissive environment, l-isoleucine is provided in free form. We predicted that DIP-A activity would be essential in the restrictive, but not in the permissive environment. The results reported here clearly contradict this prediction. Two stocks homozygous for DIP-A null alleles from different geographic locations are each viable on the restrictive diet. Furthermore, relative viability experiments in which null allele larvae compete with larvae having DIP-A activity provide no evidence for even a partial reduction in egg to adult survival on the restrictive diet. Apparently, the null allele larvae have some alternative mechanism for obtaining l-isoleucine from the dipeptide, even though no glycyl-l-isoleucine-ase activity can be detected in vitro. These results, along with the viability of null alleles for many other enzymes, support the idea that eukaryotes have an intricate network of alternative biochemical pathways through which the same necessary function may be achieved. Such "buffering capacity" makes it very difficult to analyze the effects of enzyme variants on fitness components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.