Guanine-rich human telomeric DNA can adopt secondary structures known as G-quadruplexes, which can be targeted by small molecules to achieve anticancer effects. So far, the structural information on complexes between human telomeric DNA and ligands is limited to the parallel G-quadruplex conformation, despite the high structural polymorphism of human telomeric G-quadruplexes. No structure has been yet resolved for the complex with telomestatin, one of the most promising G-quadruplex-targeting anticancer drug candidates. Here we present the first high-resolution structure of the complex between an intramolecular (3 + 1) human telomeric G-quadruplex and a telomestatin derivative, the macrocyclic hexaoxazole L2H2-6M(2)OTD. This compound is observed to interact with the G-quadruplex through π-stacking and electrostatic interactions. This structural information provides a platform for the design of topology-specific G-quadruplex-targeting compounds and is valuable for the development of new potent anticancer drugs.
Rif1 regulates replication timing and repair of double-strand DNA breaks. Using a chromatin immunoprecipitation-sequencing method, we identified 35 high-affinity Rif1-binding sites in fission yeast chromosomes. Binding sites tended to be located near dormant origins and to contain at least two copies of a conserved motif, CNWWGTGGGGG. Base substitution within these motifs resulted in complete loss of Rif1 binding and in activation of late-firing or dormant origins located up to 50 kb away. We show that Rif1-binding sites adopt G quadruplex-like structures in vitro, in a manner dependent on the conserved sequence and on other G tracts, and that purified Rif1 preferentially binds to this structure. These results suggest that Rif1 recognizes and binds G quadruplex-like structures at selected intergenic regions, thus generating local chromatin structures that may exert long-range suppressive effects on origin firing.
Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose-dependent anthocyanin 5 (7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as b-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acylglucose-dependent glucosyltransferases.
The TGF-β superfamily comprises pleiotropic cytokines that regulate SMAD and non-SMAD signaling. TGF-β-SMAD signal transduction is known to be involved in tissue fibrosis, including renal fibrosis. Here, we found that 1,25-dihydroxyvitamin D 3 -bound [1,25(OH) 2 D 3 -bound] vitamin D receptor (VDR) specifically inhibits TGF-β-SMAD signal transduction through direct interaction with SMAD3. In mouse models of tissue fibrosis, 1,25(OH) 2 D 3 treatment prevented renal fibrosis through the suppression of TGF-β-SMAD signal transduction. Based on the structure of the VDR-ligand complex, we generated 2 synthetic ligands. These ligands selectively inhibited TGF-β-SMAD signal transduction without activating VDR-mediated transcription and significantly attenuated renal fibrosis in mice. These results indicate that 1,25(OH) 2 D 3 -dependent suppression of TGF-β-SMAD signal transduction is independent of VDR-mediated transcriptional activity. In addition, these ligands did not cause hypercalcemia resulting from stimulation of the transcriptional activity of the VDR. Thus, our study provides a new strategy for generating chemical compounds that specifically inhibit TGF-β-SMAD signal transduction. Since TGF-β-SMAD signal transduction is reportedly involved in several disorders, our results will aid in the development of new drugs that do not cause detectable adverse effects, such as hypercalcemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.