Acyl‐lipid desaturases introduce double bonds (unsaturated bonds) at specifically defined positions in fatty acids that are esterified to the glycerol backbone of membrane glycerolipids. The desA, desB and desD genes of Synechocystis sp. PCC 6803 encode acyl‐lipid desaturases that introduce double bonds at the delta12, omega3 and delta6 positions of C18 fatty acids respectively. The mutation of each of these genes by insertion of an antibiotic resistance gene cartridge completely eliminated the corresponding desaturation reaction. This system allowed us to manipulate the number of unsaturated bonds in membrane glycerolipids in this organism in a step‐wise manner. Comparisons of the variously mutated cells revealed that the replacement of all polyunsaturated fatty acids by a monounsaturated fatty acid suppressed growth of the cells at low temperature and, moreover, it decreased the tolerance of the cells to photoinhibition of photosynthesis at low temperature by suppressing recovery of the photosystem II protein complex from photoinhibitory damage. However, the replacement of tri‐ and tetraunsaturated fatty acids by a diunsaturated fatty acid did not have such effects. These findings indicate that polyunsaturated fatty acids are important in protecting the photosynthetic machinery from photoinhibition at low temperatures.
In the interdigitated structure of phosphatidylcholine/alcohol systems, the one-dimensional electron density profile in the direction normal to the membrane surface is generated from the x-ray diffraction pattern. The membrane thickness for these systems is expressed by the sum of the hydrocarbon chain lengths of phosphatidylcholine and alcohol molecules. For this study, various sets of phosphatidylcholines and 1-alcohols were used; a phosphatidylcholine has a carbon number from 14 to 18 in a hydrocarbon chain, and an alcohol has a carbon number from 1 (methanol) to 4 (1-butanol). Based upon the results, we propose a model for the interdigitated structure in which 1) two alcohol molecules occupy a volume whose surface is surrounded interstitially by the headgroups of phosphatidylcholine molecules, and 2) the methyl ends of both hydrocarbon chains in alcohol and phosphatidylcholine molecules face each other at the bottom of the volume.
Chinese cabbage seedlings inoculated with an isolate of the hyphomycete, Heteroconium chaetospira, were transplanted to the field. After 3 months, they showed a 52-97% reduction in clubroot and a 49-67% reduction in Verticillium yellows compared with noninoculated controls. H. chaetospira colonized the cortical cells, especially in the root tip region. Infected plants showed no disease symptoms. The infection process involves the formation of appressoria on the cell surface and the subsequent growth of hyphae within cells. H. chaetospira colonized 18 plant species, indicating a wide range of hosts. It may have potential as a biocontrol agent for clubroot and Verticillium yellows.
The mechanism of luminescence quenching by spin labels was investigated in aqueous solution by steady-state and time-resolved luminescence techniques. Water-soluble nitroxide radicals strongly quenched the luminescence emitted by Tb3+ chelates and by fluorescein, either free or conjugated to proteins. The following features of the quenching reaction were established: (I) the rate constant for quenching of triplet-state Tb3+ by nitroxides was about 4 orders of magnitude smaller (ca. 10(5) M-1 s-1) than those of the singlet-state probes; (II) the quenchers reduced the excited-state lifetime of both probes; (III) the rate constants for quenching of both probes were found to be apparently independent of the temperature (between 6 and 42 degrees C) and viscosity (up to 60 mPa.s) of the solutions; (IV) both singlet and triplet quenching rates were sensitive to solvent polarity; (V) there is a small but significant spectral overlap between the absorption band of weekly absorbing nitroxide radicals and the emission spectra of luminophores, the extent of which, however, does not correlate with the extent of quenching; (VI) the quenching rate declines sharply with an increasing luminophore to nitroxide distance. The distance dependence of the quenching rate showed a satisfactory fit to an exponential function. These findings indicate that the quenching reaction is dominated by an electron exchange between the excited singlet- or triplet-state luminophore and the nitroxide radical rather than controlled by diffusional properties of the reactants.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.