Cellular and plasma fibronectins are heterodimers consisting of similar but not identical polypeptides. The differences between fibronectin subunits are due in part to the variability of internal primary sequences. This results from alternative splicing in at least two regions (ED and IIICS) of the pre‐mRNA. The complete primary structure of human fibronectin, including most of the internal variations, has been determined by sequencing a series of overlapping cDNA clones. In total, they covered 7692 nucleotides and represented the mRNA sequence coding from the amino terminus of the mature protein to the poly(A) tail. The deduced amino acid sequence of fibronectin has been analysed in terms of the arrangement of internal homologies and the different binding domains.
A potent tyrosine kinase inhibitor, lavendustin A [1], has been isolated from a butyl acetate extract of Streptomyces griseolavendus culture filtrate. It inhibits epidermal growth factor receptor-associated tyrosine kinase with an IC50 of 4.4 ng/ml, which is about 50 times more inhibitory than erbstatin. It does not inhibit protein kinase A or C. Its structure, determined by spectral data and total synthesis, is novel, having a tertiary amine in the center with substituted benzyl and phenyl groups. Lavendustin A competes with ATP and is noncompetitive with the peptide. Its structure-activity relationship is discussed.
The present data revealed significant a contribution of the AT1-R/NF-kappaB pathway to diabetes-induced retinal inflammation, providing a mechanistic reason for targeting AT1-R or NF-kappaB in the treatment of diabetic retinopathy.
Caspase-3(-like) proteases play important roles in controlling mammalian apoptosis. However, the downstream events from the caspase-3(-like) protease activation to death of cells are still unclear. Previously, we reported that hydrogen peroxide (H 2 O 2 ) was generated by the activation of caspase-3(-like) proteases in the process of tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma Ms-1 cells. In the present study, we examined whether generation of H 2 O 2 is a critical event for the apoptotic pathway downstream of caspase-3(-like) protease activation by various anticancer drugs. Anticancer drugs such as camptothecin, vinblastine, inostamycin, and adriamycin induced activation of caspase-3(-like) proteases and apoptosis. Generation of H 2 O 2 was commonly detected after treatment with each of the four anticancer drugs, and scavenging of H 2 O 2 caused cells to fail to undergo apoptosis. Moreover, anticancer drug-induced H 2 O 2 production was inhibited not only by an inhibitor of caspase-3(-like) proteases but also by diphenyleneiodonium chloride, an inhibitor of flavonoid-containing enzymes such as NADPH oxidase. However, activation of caspase-3(-like) proteases was not inhibited by diphenyleneiodonium chloride. These findings suggest that activation of caspase-3(-like) proteases by various anticancer drugs causes generation of H 2 O 2 presumably through the activation of NADPH oxidase, thereby inducing apoptosis.
We previously designed and synthesized an NF-B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), that showed anti-inflammatory activity in vivo. In the present study we looked into its mechanism of inhibi-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.