Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell–deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS–ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3–L-PGDS–DP1 loop that drives mast cell maturation.
To optimize a receptor-mediated and cell-selective gene transfer with polyethyleneimine (PEI)-based vector, we synthesized three galactosylated PEIs (Gal-PEI) with different molecular weights (PEI(1800), PEI(10,000), and PEI(70,000)) and investigated their potential as a targetable vector to asialoglycoprotein receptor-positive cells. All PEI derivatives formed complexes with plasmid DNA (pDNA), whereas the particle size of the complex became smaller on increasing the molecular weight of PEI. Transfection efficiency in HepG2 cells with PEI was highest with PEI(1800); efficiency was next highest with PEI(10,000), although the cellular association was similar. After galactosylation, Gal(19)-PEI(10,000)/pDNA and Gal(120)-PEI(70,000)/pDNA showed considerable agglutination with a galactose-recognizing lectin, but Gal(9)-PEI(1800) did not, suggesting that galactose units on the Gal(9)-PEI(1800)-pDNA complex are not sufficiently available for recognition. Gal(19)-PEI(10,000)-pDNA and Gal(120)-PEI(70,000)-pDNA complexes showed galactose-inhibitable transgene expression in HepG2 cells. Transfection efficiency was greatest with Gal(19)-PEI(10,000)/pDNA, a result that highlights the importance of obtaining a balance between the cytotoxicity and the transfection activity, both of which are found to be a function of the molecular weight of PEI. After intraportal injection, however, Gal(153)-PEI(70,000)/pDNA having a low N/P ratio was most effective, suggesting that additional variables, such as the size of the complex, are important for in vivo gene transfer to hepatocytes.
PGE2 has long been known as a potentiator of acute inflammation, but its mechanisms of action still remain to be defined. In this study, we employed inflammatory swelling induced in mice by arachidonate and PGE2 as models and dissected the role and mechanisms of action of each EP receptor at the molecular level. Arachidonate- or PGE2-induced vascular permeability was significantly reduced in EP3-deficient mice. Intriguingly, the PGE2-induced response was suppressed by histamine H1 antagonist treatment, histidine decarboxylase deficiency, and mast cell deficiency. The impaired PGE2-induced response in mast cell–deficient mice was rescued upon reconstitution with wild-type mast cells but not with EP3-deficient mast cells. Although the number of mast cells, protease activity, and histamine contents in ear tissues in EP3-deficient mice were comparable to those in wild-type mice, the histamine contents in ear tissues were attenuated upon PGE2 treatment in wild-type but not in EP3-deficient mice. Consistently, PGE2–EP3 signaling elicited histamine release in mouse peritoneal and bone marrow–derived mast cells, and it exerted degranulation and IL-6 production in a manner sensitive to pertussis toxin and a PI3K inhibitor and dependent on extracellular Ca2+ ions. These results demonstrate that PGE2 triggers mast cell activation via an EP3–Gi/o–Ca2+ influx/PI3K pathway, and this mechanism underlies PGE2-induced vascular permeability and consequent edema formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.