Increased density was more likely to produce swelling, redness, and hyperpigmentation when compared to increased energy. Patient satisfaction is significantly higher when their skin is treated with high fluences, but not when patients' skin is treated with high densities.
Using the experimental angular distributions of photoelectrons from the K-shells of an oriented CO molecule reported in a companion paper, we have performed a so-called complete experiment and determined 18 dynamical parameters (ten moduli of transition moments and eight phase differences) for the O K-shell, and 16 dynamical parameters (nine moduli of transition moments and seven phase differences) for the C K-shell, and compared them with the results of our calculations in the relaxed-core Hartree-Fock (RCHF) approximation. The agreement between theory and experiment is only qualitative, therefore the model has to be improved by including electron correlations. From the analysis of experimental data we proved that the σ * shape resonance is due to not only the f-wave, as was widely believed earlier, but is due to approximately equal contributions of three partial waves with 1 l 3 for the C K-shell, and four partial waves with 0 l 3 for the O K-shell, with a rather substantial contribution of other partial waves with l 5. From the analysis of the transition moments determined from the experiment it follows that several Cooper minima are likely to exist in partial photoionization cross sections, in particular, in the C 1sσ → εsσ and in the O 1sσ → εdσ transitions.
Patients with severe burn and/or smoke inhalation injury suffer both systemic and pulmonary vascular hyperpermeability. We hypothesized that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) plays a role in the changes in microvascular permeability seen with this injury. To test the hypothesis, we administered mercaptoethylguanidine (MEG), a selective iNOS inhibitor, to conscious sheep subjected to a combined smoke inhalation and third-degree burn injury to 40% of total body surface area. The sheep were surgically prepared for chronic study with lung and prefemoral lymph fistulas in order to estimate microvascular permeability. Both the groups and a control group of animals showed an increase in iNOS protein and message in their lungs. The control animals showed significant increases in either plasma or lymph NO2-/NO3- (NOx) concentration at 24 h after injury, with associated cardiac depression and hemoconcentration. The airway epithelium stained for nitrotyrosine. In the treatment group, NOx did not increase significantly in plasma or lymph throughout the experiment, there was no nitrotyrosine staining, hemodynamic depression was not observed, and the fluid requirement was significantly less than in the control group. Changes in pulmonary microvascular permeability were significantly suppressed by inhibition of iNOS. However, there was no significant difference between the two study groups in the microvascular permeability of burned tissue. These data suggest that NO produced by iNOS plays an important role in the changes in systemic and pulmonary microvascular permeability in combined smoke inhalation/third-degree burn injury, but does not affect the vascular permeability of third-degree-burned tissue in this type of injury.
The goals of this study were (i) to compare the degree and (ii) temporal changes in airway obstruction in sheep with pulmonary injury induced by smoke inhalation and/or burn; (iii) to qualitatively assess the cellular and mucous content of obstructive material; and (iv) to statistically assess a possible relationship between the degree of airway obstruction and pulmonary dysfunction. Using masked histologic slides, we estimated the degree of luminal obstruction in all cross-sectioned airways. The mean degree of bronchial, bronchiolar, and terminal bronchiolar obstruction was significantly greater in animals with smoke injury alone or combined smoke inhalation and burn (S+B) injury, compared with animals with burn injury alone or uninjured animals (P < 0.05). In S+B animals, the degree of bronchial obstruction was maximal at 24 h, with a progressive decrease over 72 h. In contrast, the degree of bronchiolar obstruction increased over time. Qualitatively, bronchial casts were largely composed of mucus at early times after injury, whereas neutrophils were the principal component of bronchiolar obstructive material. Localization of specific mucin subtypes in S+B tissues suggests that increasing bronchiolar obstruction is derived, in part, from upper airway material. Multiple linear regression analysis of airway obstruction scores compared with PaO2/FIO2 values showed a correlation coefficient of r = 0.76, with bronchial and bronchiolar scores predictive of PaO2/FIO2, (P < 0.05). These results suggest that strategies to remove or decrease formation of upper airway obstructive material may reduce its deposition into small airways and parenchyma and may improve respiratory function in victims of smoke inhalation injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.