IntroductionSevere thermal injury is characterized by profound morbidity and mortality. Advances in burn and critical care, including early excision and grafting, aggressive resuscitation and advances in antimicrobial therapy have made substantial contributions to decrease morbidity and mortality. Despite these advances, death still occurs. Our aim was to determine the predominant causes of death in burned pediatric patients in order to develop new treatment avenues and future trajectories associated with increased survival.MethodsPrimary causes of death were reviewed from 144 pediatric autopsy reports. Percentages of patients that died from anoxic brain injuries, sepsis, or multi-organ failure were calculated by comparing to the total number of deaths. Data was stratified by time (from 1989 to 1999, and 1999 to 2009), and gender. Statistical analysis was done by chi-squared, Student's t-test and Kaplan-Meier for survival where applicable. Significance was accepted as P < 0.05.ResultsFive-thousand two-hundred-sixty patients were admitted after burn injury from July 1989 to June 2009, and of those, 145 patients died after burn injury. Of these patients, 144 patients had an autopsy. The leading causes of death over 20 years were sepsis (47%), respiratory failure (29%), anoxic brain injury (16%), and shock (8%). From 1989 to 1999, sepsis accounted for 35% of deaths but increased to 54% from 1999 to 2009, with a significant increase in the proportion due to antibiotic resistant organisms (P < 0.05).ConclusionsSepsis is the leading cause of death after burn injury. Multiple antibiotic resistant bacteria now account for the bulk of deaths due to sepsis. Further improvement in survival may require improved strategies to deal with this problem.
In this study we examined the role of inducible nitric oxide synthase (iNOS) in acute respiratory distress syndrome (ARDS) in sheep with severe combined burn and smoke inhalation injury. BBS-2, a potent and highly selective iNOS dimerization inhibitor, was used to exclude effects on the endothelial and neuronal NOS isoforms. Seven days after surgical recovery, sheep were given a burn (40% of total body surface, 3rd degree) and insufflated with cotton smoke (48 breaths, < 40 degrees C) under anesthesia. BBS-2 was provided by constant infusion at 100 microg/kg/hour, beginning 1 hour after injury. During 48 hours, control sheep developed multiple signs of ARDS. These included decreased pulmonary gas exchange, increased pulmonary edema, abnormal lung compliance, and extensive airway obstruction. These pathologies were associated with a large increase in tracheal blood flow and elevated plasma NO2-/NO3- (NOx) levels. These variables were all stable in sham animals. Treatment of injured sheep with BBS-2 attenuated the increases in tracheal blood flow and plasma NOx levels, and significantly attenuated all the pulmonary pathologies that were noted. The results provide definitive evidence that iNOS is a key mediator of pulmonary pathology in sheep with ARDS resulting from combined burn and smoke inhalation injury.
This animal model closely resembles hyperdynamic sepsis in humans and may be of great value for studies of sepsis with smoke inhalation.
Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS. Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer’s solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4. Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects. Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS. Trail registration number NCT01775774 for Phase 1. NCT02097641 for Phase 2.
The goals of this study were (i) to compare the degree and (ii) temporal changes in airway obstruction in sheep with pulmonary injury induced by smoke inhalation and/or burn; (iii) to qualitatively assess the cellular and mucous content of obstructive material; and (iv) to statistically assess a possible relationship between the degree of airway obstruction and pulmonary dysfunction. Using masked histologic slides, we estimated the degree of luminal obstruction in all cross-sectioned airways. The mean degree of bronchial, bronchiolar, and terminal bronchiolar obstruction was significantly greater in animals with smoke injury alone or combined smoke inhalation and burn (S+B) injury, compared with animals with burn injury alone or uninjured animals (P < 0.05). In S+B animals, the degree of bronchial obstruction was maximal at 24 h, with a progressive decrease over 72 h. In contrast, the degree of bronchiolar obstruction increased over time. Qualitatively, bronchial casts were largely composed of mucus at early times after injury, whereas neutrophils were the principal component of bronchiolar obstructive material. Localization of specific mucin subtypes in S+B tissues suggests that increasing bronchiolar obstruction is derived, in part, from upper airway material. Multiple linear regression analysis of airway obstruction scores compared with PaO2/FIO2 values showed a correlation coefficient of r = 0.76, with bronchial and bronchiolar scores predictive of PaO2/FIO2, (P < 0.05). These results suggest that strategies to remove or decrease formation of upper airway obstructive material may reduce its deposition into small airways and parenchyma and may improve respiratory function in victims of smoke inhalation injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.