To cope with life‐threatening high osmolarity, yeast activates the high‐osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin‐like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1‐independent manner.
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both gain-of-function and loss-of-function alleles in four key genes involved in the SHO1 branch, namely SHO1, CDC42, STE50, and STE11. These mutants were characterized using an HOG-dependent reporter gene, 8xCRE-lacZ. We found that Cdc42, in addition to binding and activating the PAK-like kinases Ste20 and Cla4, binds to the Ste11-Ste50 complex to bring activated Ste20/Cla4 to their substrate Ste11. Activated Ste11 and its HOG pathway-specific substrate, Pbs2, are brought together by Sho1; the Ste11-Ste50 complex binds to the cytoplasmic domain of Sho1, to which Pbs2 also binds. Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2.
C-Acetate can act as a probe of tissue metabolism through entry into catabolic or anabolic metabolic pathways as mediated by acetyl-coenzyme A. The uptake of 11 C-acetate in prostate cancer was investigated to determine whether this tracer has potential in tumor identification. Methods: Twenty-two patients with prostate cancer underwent PET after intravenous administration of 740 MBq 11 C-acetate. Eighteen of the 22 patients were also investigated with 18 F-FDG PET. Standardized uptake values (SUVs) for each tumor were investigated for tracer activity at 10-20 min after 11 C-acetate and 40-60 min after 18 F-FDG administration. Results: Adenocarcinoma of the prostate showed variable uptake of 11 C-acetate, with SUVs ranging from 3.27 to 9.87. In contrast, SUVs for 18 F-FDG ranged from 1.97 to 6.34. By visual inspection, 11 C-acetate accumulation in primary prostate tumors was positive in all patients, whereas 18 F-FDG accumulation was positive in only 15 of 18 patients. 11 C-Acetate PET in a patient with lymph node metastasis showed high intrapelvic accumulation corresponding to metastatic sites. Similarly, 2 patients with bone metastases were 11 C-acetate avid. Conclusion: 11 C-Acetate shows marked uptake in prostate cancer and is more sensitive in detection of prostate cancer than is 18 F-FDG PET. 11 C-Acetate represents a new tracer for detection of prostate cancer with PET, measuring radiopharmaceutical uptake pathways that are different from those measured by 18 F-FDG.
Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network.
The yeast filamentous growth (FG) MAP kinase (MAPK) pathway is activated under poor nutritional conditions. We found that the FG‐specific Kss1 MAPK is activated by a combination of an O‐glycosylation defect caused by disruption of the gene encoding the protein O‐mannosyltransferase Pmt4, and an N‐glycosylation defect induced by tunicamycin. The O‐glycosylated membrane proteins Msb2 and Opy2 are both essential for activating the FG MAPK pathway, but only defective glycosylation of Msb2 activates the FG MAPK pathway. Although the osmoregulatory HOG (high osmolarity glycerol) MAPK pathway and the FG MAPK pathway share almost the entire upstream signalling machinery, osmostress activates only the HOG‐specific Hog1 MAPK. Conversely, we now show that glycosylation defects activate only Kss1, while activated Kss1 and the Ptp2 tyrosine phosphatase inhibit Hog1. In the absence of Kss1 or Ptp2, however, glycosylation defects activate Hog1. When Hog1 is activated by glycosylation defects in ptp2 mutant, Kss1 activation is suppressed by Hog1. Thus, the reciprocal inhibitory loop between Kss1 and Hog1 allows only one or the other of these MAPKs to be stably activated under various stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.